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Abstract

Despite significant development over the last decades, a model able to describe the periphery
region of magnetic confinement fusion devices, extending from the edge to the far scrape-off
layer, is still missing. This is because this region is characterized by the presence of turbulent
fluctuations at scales ranging from the Larmor radius to the size of the machine, the presence
of strong flows, comparable amplitudes of background and fluctuating components, and a
large range of collisionality regimes. The lack of a proper model has undermined our ability to
properly simulate the plasma dynamics in this region, which is necessary to predict the heat
flux to the vessel wall of future fusion devices, the L-H transition, and ELM dynamics. These
are some of the most important issues on the way to a fusion reactor. In the present thesis, a
drift-kinetic and a gyrokinetic model able to describe the plasma dynamics in the tokamak pe-
riphery are developed, which take into account electrostatic fluctuations at all relevant scales,
allowing for comparable amplitudes of background and fluctuating components. In addition,
the models implement a full Coulomb collision operator, and are therefore valid at arbitrary
collisionality regimes. For an efficient numerical implementation of the models, the resulting
kinetic equations are projected onto a Hermite-Laguerre velocity-space polynomial basis,
obtaining a moment-hierarchy. The treatment of arbitrary collisionalities is performed by
expressing the full Coulomb collision operator in guiding-center and gyrocentre coordinates,
and by providing a closed formula for its gyroaverage in terms of the moments of the plasma
distribution function, therefore filling a long standing gap in the literature. The use of system-
atic closures to truncate the moment-hierarchy equation, such as the semi-collisional closure,
allows for the straightforward adjustment of the kinetic physics content of the model. In the
electrostatic high collisionality regime, our models are therefore reduced to an improved set of
drift-reduced Braginskii equations, which are widely used in scrape-off layer simulations. The
first numerical studies based on our models are carried out, shedding light on the interplay
between collisional, using the Coulomb collision operator, and collisionless mechanisms. In
particular, the dynamics of electron-plasma waves and the drift-wave instability are studied
at arbitrary collisionality. A comparison is made with the collisionless limit and simplified
collision operators used in state-of-the-art simulation codes, where large deviations in the
growth rates and eigenmode spectra are found, especially at the levels of collisionality relevant
for present and future magnetic confinement fusion devices.

Keywords: Plasma Physics, Nuclear Fusion, Magnetic Confinement, Plasma Turbulence,
Plasma Instabilities, Kinetic Theory






Résumé

Malgré un important développement au cours de ces dernieres décennies, un modeéle capa-
ble de décrire la région périphérique des dispositifs de fusion a confinement magnétique,
s’étendant du bord au scrape-off layer, fait toujours défaut. En effet, cette région est caractéri-
sée par la présence de fluctuations turbulentes sur des échelles allant du rayon de Larmor a la
taille de la machine, de forts flux, d’amplitudes de fluctuation comparables a celles d’équilibre,
ainsi que d'une large gamme de régimes de collisionnalité. L'absence d'un modele approprié a
compromis notre capacité a simuler correctement la dynamique du plasma dans cette région,
ce qui est nécessaire pour prévoir le flux de chaleur vers la paroi des futurs dispositifs de
fusion, la transition L-H, ainsi que la dynamique des ELMs, qui sont parmi les plus importants
obstacles sur la voie d'un réacteur a fusion. Dans la présente thése, un modéle de dérive-
cinétique et un modele gyrocinétique capables de décrire la dynamique du plasma dans la
périphérie du tokamak sont développés. Ces modeles prennent en compte les fluctuations
électrostatiques a toutes les échelles d’intérét, permettant ainsi aux niveaux de fluctuations
d’étre comparables aux valeurs d’équilibre. De plus, les modéles présents possedent un opéra-
teur de collision de Coulomb exact permettant son application a des niveaux arbitraires de
collisionnalité. Pour une implémentation numérique efficace du modele, I’équation cinétique
résultante est projetée sur I’espace des vitesses par le truchement d'une base polynomiale
d’'Hermite-Laguerre, établissant ainsi une hiérarchie de moments. Le traitement des niveaux
arbitraires de collisionnalité s’effectue en exprimant I'opérateur de Coulomb dans les coordon-
nées d’espace de phase correspondant au centre de guidage et au gyrocentre, en fournissant
ainsi une relation fermée pour sa gyro-moyenne en fonction des moments de la fonction
de distribution du plasma, comblant un vide persistant de longue date dans la littérature.
L'utilisation de troncatures systématiques pour I'équation de la hiérarchie des moments, telle
que la troncature semi-collisionnelle, permet un ajustement simple du contenu cinétique et
physique du modele. Dans le régime électrostatique hautement collisionnel, notre modele
se réduit a une version améliorée des équations de dérive de Braginskii, qui sont largement
utilisées dans les simulations numériques de la dynamique du plasma au bord des réacteurs
a fusion. Les premieéres études numériques basées sur notre modéle sont réalisées, mettant
en lumiere 'interaction entre les mécanismes liés aux différents niveaux de collision grace a
l'utilisation de I'opérateur de Coulomb. En particulier, nous étudions la dynamique des ondes
électron-plasma et 'instabilité des ondes de dérive dans des niveaux de collisionnalité arbi-
traires. Une comparaison est ainsi réalisée avec différents opérateurs de collision simplifiés et
avec la limite non collisionnelle, utilisés dans les codes de simulation les plus avancés. En effet,
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Résumé

ceux-ci produisent des écarts importants dans les taux de croissance et les spectres des modes
propres, en particulier aux niveaux intermédiaires de collisionnalité qui sont importants pour
les réacteurs de fusion par confinement magnétique actuels et futurs.

Mots clefs: Physique des Plasmas, Fusion Nucléaire, Confinement Magnétique, Turbulence
de Plasma, Instabilités des Plasmas, Théorie Cinétique



Resumo

Apesar de nas tltimas décadas se ter verificado um desenvolvimento significativo, ainda
ndo foi concebido um modelo capaz de descrever a regido periférica de maquinas de fusdao por
confinamento magnético, estendendo-se desde o bordo até a scrape-off layer. A dificuldade
reside no facto de esta regido ser caracterizada pela presenca de flutuagdes turbulentas a
escalas espaciais muito distintas, compreendidas entre o raio de Larmor dos eletroes e a
dimensdo da méaquina, pela presenca de fortes fluxos de plasma, por componentes de equi-
librio e flutuantes de amplitude comparével, e por uma ampla gama de regimes colisionais.
A auséncia de um modelo adequado tem posto em causa a nossa habilidade para simular
corretamente a dindmica do plasma nesta regido, sendo tal necessario para prever o fluxo
de calor na parede de maquinas de fusdo futuras, a transicdo L-H, e a dindmica de ELMs.
Estas sdo algumas das questdes mais importantes no caminho para um reator de fusdo. Na
presente tese, um modelo de deriva-cinética e um modelo girocinético capazes de descrever a
dinamica de plasma na periferia do tokamak sdo desenvolvidos, levando em conta flutuacoes
eletrostaticas a todas as escalas relevantes, permitindo componentes de equilibrio e flutuantes
de amplitude comparavel. Além disso, os modelos implementam um operador de colisdo de
Coulomb completo, sendo assim vélidos para regimes de colisionalidade arbitraria. De modo
a obter uma implementa¢do numérica dos modelos, a equacdo cinética obtida € projetada
numa base polinomial de Hermite-Laguerre no espaco das velocidades, obtendo assim uma
hierarquia de momentos. O tratamento de colisionalidades arbitrarias é feito expressando
o operador de colisdo de Coulomb em coordenadas de centro-guia e de girocentro, forne-
cendo assim uma férmula fechada para a sua média de giracdo em termos de momentos da
funcao de distribui¢do, colmatando assim uma lacuna de longa data na literatura. O uso de
fechos sistematicos para truncar a equacdo de hierarquia de momentos, tais como o fecho
semi-colisional, permite uma selecao imediata do contetido de fisica cinética contida no
modelo. Num regime eletrostatico de alta colisionalidade, o nosso modelo reduz-se a um
conjunto melhorado de equagdes de deriva reduzidas de Braginskii, que tém sido amplamente
utilizadas em simulag¢ées da scrape-off layer. Os primeiros estudos numéricos baseados no
nosso modelo sdo apresentados, levando assim a compreensdo de alguns pontos essenciais
sobre a interacdo entre mecanismos ndo colisionais e colisionais, utilizando um operador de
colisdo de Coulomb adequado. Em particular, estudamos a dindmica de ondas de plasma
eletrénicas e a instabilidade de ondas de deriva a colisionalidades arbitrarias. Uma compa-
racao é feita com o limite nao colisional e operadores de colisdo simplificados utilizados em
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Resumo

codigos de simulacdo atuais, onde grandes desvios nas taxas de crescimento e espetro de
modos préprios sdo encontrados, especialmente a niveis de colisionalidade relevantes para
maquinas de confinamento magnético presentes e futuras.

Palavras-chave: Fisica de Plasmas, Fusao Nuclear, Confinamento Magnético, Turbuléncia
de Plasma, Instabilidades de Plasma, Teoria Cinética
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1 Introduction

The growth of the world’s economy is made possible by a continuous increase in primary
energy consumption. Indeed, a substantial amount of energy is required in order to keep
improving the living standards of both developing and developed economies. As shown in
Fig. 1.1, between 1992 and 2017, the primary energy consumption of the world increased
by 70%, from 8 billion to a 13.5 billion tons oil equivalent (Chen & Wu, 2017). In 2016, the
world consumption of energy grew by 1.3%, and a growth of 2.2% was recorded in 2017, the
highest since 2013. The growth is projected to continue increasing in the next years (British
Petroleum, 2018). Such growth had a direct impact on the climate, particularly through the
global emissions of CO,, which doubled in the period 1975-2015 and are projected to triple by
2040 (Chu et al., 2016). The amount of energy generated from fossil fuels needs to be severely
limited if the production of greenhouse gases such as CO;, is to be reduced. Therefore, there is
an urge to outline possible paths towards sustainable energy production and consumption. In
this context, a huge effort is currently devoted to investigate the possibility of using fusion as a
source of energy that can ultimately address the increasing world energy demand.

Fusion is a form of nuclear energy, the main source of energy in the Sun and other stars.
Here, light nuclei with combined initial mass m; recombine into one or more atomic nuclei
with mass m¢. When my < m;, the difference in mass between the initial and final particles is
converted into released energy E according to Einstein’s relation

E:(mi—mf)cz, (1.1)

where c is the speed of light. Among all possible fusion reactions that release energy, the one
between deuterium-tritium (DT)

“D+T—3 He+yn, (1.2)

is considered to be the best suited reaction for the first generation of fusion devices (Freidberg,
2007). This reaction yields a net energy of 17.6 MeV that goes into the kinetic energy of
the fusion products, approximately 3.5 MeV to gHe and 14.1 MeV to (l)n. The kinetic energy
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Figure 1.1: World primary energy consumption between 1992 and 2017 in million tonnes oil
equivalent. In 2017 alone, energy consumption grew 2.2%, with the largest increment provided
by natural gas, followed by renewable power and oil. Source: British Petroleum (2018).

imparted to the neutrons will be used to produce electricity. The energy of the ‘ZLHe will be
used to heat the fresh fusion fuel and compensate for the unavoidable heat losses, keeping
the reaction going. The deuterium for the fusion process can be extracted from sea water. On
the other hand, tritium can be obtained from the reaction of the neutron with the lithium
in a blanket surrounding the device. A fusion reactor is expected not to produce long-lived
radioactive waste. Indeed, with an appropriate choice of materials, half-lives of dozens of
years can be achieved (Fetter et al., 1988).

The material in a fusion reactor must be sufficiently well confined with a sufficiently high
temperature T and density n for the gHe energy to balance the energy losses due to radiation,
conduction, and convection. This statement can be quantified into a single constraint in terms
of T, n, and confinement time, 7. The confinement time is defined as the energy content of the
plasma W divided by the power loss Pjogs, T = W/ Pjoss (With the thermal energy of the plasma
W given by the integral over volume of the energy density n, T, summed over all species a).
Indeed, for self-sustained fusion reactors, the power loss Pj¢s has to be compensated by the
energy produced by the fusion reactions, such that fEfj, = Pjoss where [ is the number of
fusion reactions per time unit and Ef, the energy of the charged fusion products. Assuming
that the plasma in the reactor is composed by electrons, deuterium, and tritium with roughly
the same density and temperature, and assuming that the distribution of energy of the plasma
particles follows a Gaussian distribution, a minimum value for the product nT7 can be found,
yielding the condition (Wesson, 2004)

nT >5%x 10 sm~3 keV, (1.3)
with a minimizing value of T, = 15 keV (which is in fact one order of magnitude higher than
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the temperatures at the sun’s core, ~ 1 KeV). Equation (1.3) is commonly known as Lawson’s
criterion.

At the temperatures necessary for self-sustained fusion, the fusion fuel is fully ionized, i.e.,
electrons are stripped away from their atomic nuclei as the ionization energy of the plasma
elements (~10 eV) is a few orders of magnitude below the keV range. The resulting neutral gas
of dissociated electrons and ions is called a plasma. As both electrons and ions are electrically
charged, the particles in the plasma interact through electromagnetic forces. Ultimately,
the description of a plasma can be reduced to the understanding of the trajectories of its
constituting particles. This usually involves solving an extremely complex set of equations
in typically non-trivial geometry settings to study the motion of charged particles in the
electromagnetic fields that are both externally applied and generated by the plasma itself.

Several strategies have been devised to confine the plasma in fusion conditions, with
two main lines of research pursued today: inertial and magnetic confinement fusion. In
inertial confinement fusion, nuclear fusion reactions are initiated through the heating and
compression of a fuel target by high-energy laser, electron, or ion beams. With very high
plasma densities (n ~ 1039 m=3), Eq. (1.3) allows for short confinement times (7 ~ 1079s). On
the other hand, in magnetic confinement fusion, the plasma is confined by strong magnetic
fields. Magnetic confinement fusion reactors are targeted to work at considerably lower
densities (n ~ 10?° m~3) that are, in fact, much lower than the density of air (1 ~ 102> m™3).
This constraints the confinement time to be greater than at least one second, according to
Eq. (1.3). The present thesis focuses on magnetic confinement fusion.

The magnetic field B = Bb necessary to ensure plasma equilibrium in magnetic fusion
devices can be derived from the force balance equation (Freidberg, 2007)

JxB=VP (1.4)
where J is the plasma current, related to the magnetic field by Ampere’s law
V x B = ugJ, (1.5)

and P is the plasma pressure. The force balance equation, Eq. (1.4), is derived from the
magnetohydrodynamics (MHD) equation of motion in the steady state limit without flows,
and it essentially provides the amount of current necessary to magnetically confine a plasma
with finite pressure. From Eq. (1.4), we see that the vectors B and J should lie on surfaces of
constant pressure, as B-VP =J-VP = 0. This statement, combined with the fact that, according
to Poincaré’s theorem, a compact surface which is everywhere tangential to a non-vanishing
vector field free of singularities must have the topology of a torus (Helander, 2014), shows
that surfaces of constant pressure in a magnetically confined plasma must have a toroidal
geometry, and that field lines of B and J should wind around the torus (see Fig. 1.2). There
are three ways to twist the magnetic field lines around a torus: by driving an electric current
through the plasma, by rotating the poloidal cross-section of the magnetic flux surfaces along
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(a) Coils (b)

Blanket Plasma Magnetic
field line

Figure 1.2: Schematics of two magnetic confinement fusion designs: tokamaks (a) and stel-
larators (b). The twist in magnetic field lines in the tokamak is driven by a current generated
in the plasma, while in the stellarator, a plasma current is not needed as magnetic field lines
are twisted entirely by external non-axisymmetric coils. Source: (Xu, 2016).

the toroidal direction, or by making the magnetic axis not lie in a plane (this is called magnetic
torsion) (Mercier, 1964; Helander, 2014). Currently, the magnetic confinement fusion device
that showed higher confinement times and is more theoretically and experimentally advanced
is the tokamak (Fig. 1.2 a). In tokamaks, magnetic field line twisting is provided by means of
a plasma current only. This contrasts with stellarators that usually rely on a combination of
both rotation of the flux surfaces’ poloidal cross-section and torsion of the magnetic axis.

1.1 The Tokamak Device

In a tokamak, the plasma is confined by means of a magnetic field inside a toroidal chamber,
as shown in Fig. 1.2 (a). The largest tokamak in operation today is JET, where the highest ratio
Q between the fusion power generated in the reactor and the external heating power, namely
Q = 0.7, with a triple product nT7 =~ 8 x 10%? keV s m~3 was obtained (Jacquinot, 2010). The
achievements in tokamak research paved the way to the construction of the ITER tokamak in
France, expected to produce its first plasma in 2025, with the goal of obtaining Q = 10 (Aymar
et al., 2002) and show the feasibility of using magnetic confinement fusion as a source of
energy. A schematic diagram of the ITER fusion reactor is shown in Fig. 1.3.

The magnetic field in a tokamak is generated by a combination of coils arranged on a set
of equidistant poloidal planes, creating the toroidal component of the magnetic field, and by
plasma current driven by a toroidal electric field which is induced, thanks to a transformer
action, by the central coils in Fig. 1.2 (a). The plasma in the tokamak can be heated to
temperatures of a few keV leveraging the fact that plasma current produces ohmic heating.
However, temperatures above 10 keV are necessary to ignite the fusion reactions are achieved
by means of additional heating using particle beams or electromagnetic waves (Wesson, 2004).
While such temperatures are expected to be achieved in the plasma core, the periphery region
of the plasma should be substantially colder in order not to damage plasma-facing materials,

4



1.2. Modelling of Plasma Dynamics at the Tokamak Periphery

Figure 1.3: Schematic of the ITER (International Thermonuclear Experimental Reactor) device,
including its divertor (blue), external coils (orange and green), and its D-shaped vessel. Source:
iter.org

ensuring a reasonable lifetime of the device, and avoiding the impurities sputtered by the
solid walls to contaminate the plasma and decrease its stability and confinement properties.
Ultimately, the complex interaction between the plasma and the device can constitute a
limiting factor in achieving Lawson’s criterion, Eq. (1.3). For this reason, several mechanisms
to control the plasma-solid interaction are devised. In most of present tokamaks and in ITER,
the flux of heat and particles is typically diverted to the bottom of the device in the divertor
region (blue region in Fig. 1.3). A divertor configuration of a tokamak plasma is shown in
Fig. 1.4, together with a typical structure of the magnetic flux surfaces that allow the removal
of heat and particles through the divertor. In this thesis, we mainly focus on the plasma
periphery region, composed of the edge, where the magnetic field lines lie on flux surfaces
that do not intercept the wall of the device, and the scrape-off layer (SOL), where the magnetic
field lines intercept the wall of the device (see Fig. 1.4). The magnetic flux surface that defines
the separation between these two regions is called the last closed flux surface, or separatrix.

1.2 Modelling of Plasma Dynamics at the Tokamak Periphery

A full understanding of the dynamics at the tokamak edge and SOL regions is essential for the
successful operation of future fusion experiments and reactors, as this region is responsible
for much of the overall confinement of the tokamak device (Ricci, 2015). In the edge region of
magnetic fusion devices operating a regime of improved confinement (the so-called H-mode
observed in many present devices and predicted to occur in many future devices such as
ITER) a pedestal develops, i.e., the profiles of density and temperature become very steep near
the separatrix and a radial electric field is formed, which is thought to be responsible for the
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Figure 1.4: Poloidal cross-section of a tokamak plasma, divided into three regions: most inward
hotter region (core), most outward region with closed magnetic flux surfaces in red (edge),
region with magnetic field lines that intercept the wall of the device in yellow (SOL).

reduction of turbulence levels (Wagner et al., 1984). The H-mode pedestal can be periodically
relaxed due to Edge-Localized Modes (the so-called ELMs), yielding large amplitude bursts
of particle and heat exhaust into the SOL (Leonard, 2014), which are a major concern on the
way to fusion. The SOL region, on the other hand, controls the plasma heat exhaust, plasma
refuelling and the removal of fusion ashes, and sets the boundary between the plasma and the
vessel. Moreover, in the SOL, due to the presence of a complex magnetic geometry, typical
coordinate systems used for core simulations are found to be singular. Due to the crucial role of
the tokamak periphery region on the performance of a fusion device, significant experimental
and theoretical work has been devoted in the last few decades to the understanding of the
fundamental mechanisms governing the dynamics of this region (Loarte et al., 2007).

The dynamics of the plasma at the tokamak periphery region is observed to be strongly
nonlinear. Fluctuations occur on a broadband range of wavenumbers k ~ Vlogn ~ Vlog T and
frequencies w ~ |0;logn| ~ |0;log T'| (Scott, 2007), and are strongly anisotropic, i.e., wavenum-
bers parallel to the magnetic field (kj = k-b) are much smaller than the perpendicular ones
(k1 =k- kjb). Modes present in the edge can have perpendicular wavelengths as low as the
ion gyration radius p; (p; ~0.3cm at T =1keVan B =1T) and, in the SOL, the dominant
turbulent modes have a perpendicular wavelengths that are usually one order of magnitude or
more smaller than p; (p; ~0.3mmat T =10 eV an B =1T) (Agostini et al., 2011). The typical
pi lengths at the tokamak periphery and core are indeed much smaller than the tokamak mi-
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nor and major radius, a and R, respectively, of typical magnetic field gradient lengths Lg ~ R,
and of typical scale lengths of the fluctuations in the parallel direction L ~ 1/ k). Regarding
turbulent frequencies w, these are typically much lower than the ion gyrofrequency Q; (Hahm
etal., 2009).

The gyrokinetic model is the most established one to describe tokamak turbulence in the
ordering k; p; ~ 1, w/Q; < 1 and kj/k; <« 1 (Catto, 1978; Frieman & Chen, 1982; Brizard &
Hahm, 2007; Parra & Catto, 2008; Hahm et al., 2009). Gyrokinetic theory provides a rigorous
framework to remove the details of the charged particle’s gyromotion and other high frequency
phenomena. A variety of numerical methods have been developed to solve numerically the
gyrokinetic equation, with the two main types being the continuum (Jenko & Dorland, 2001)
and the particle-in-cell (Lee, 1987) methods. These methods have allowed major progress in
the understanding of tokamak turbulence in the core, where a low collisionality model can be
used and plasma quantities can be split between fluctuating and time-averaged components,
in order to evolve only the former (the so-called 6 f approach) (Kinsey et al., 2011). Among
several gyrokinetic codes used to describe plasma turbulence in the tokamak core, we mention
CGYRO (Candy et al., 2016), GEM (Parker et al., 1999), GENE (Jenko et al., 2000; Gorler et al.,
2011), GKV (Watanabe & Sugama, 2006), GKW (Peeters et al., 2009), GS2 (Kotschenreuther
et al., 1995; Dorland et al., 2000), GYRO (Candy & Waltz, 2003), GYSELA (Latu et al., 2007),
and ORB?5 (Jolliet et al., 2007). However, some complications arise when applying established
gyrokinetic simulations for the tokamak core to the plasma periphery. In the edge and SOL,
the plasma is turbulent, with fluctuation levels of order unity, which renders conventional é f
gyrokinetic approaches unable to handle such conditions, as opposed to more computational
demanding approaches that do not separate fluctuating and time-averaged quantities, also
called full-F approaches. Furthermore, while the core is weakly collisional with temperatures
of ~ 10 keV, the tokamak periphery is characterized by temperatures ranging from the keV
range at the inner edge to a few eV in the far SOL region, with a similar order of magnitude
variation for the plasma density. The development of a gyrokinetic collision operator derived
from first principles, able to handle arbitrary collisionality regimes in a turbulent setting
is still the subject of ongoing research (Hirvijoki et al., 2017). Indeed, there are only a few
recent attempts to use gyrokinetic simulations for the tokamak periphery. Among these, we
mention COGENT (Dotf et al., 2013), ELMFIRE (Heikkinen et al., 2008), G5D (Kawali et al.,
2017), GKEYLL (Shi et al., 2017), TEMPEST (Xu et al., 2010), and XGC1 (Chang et al., 2009).

We remark that the effect of Coulomb collisions between charged particles is crucial to
accurately predict the growth rate of instabilities occurring in magnetic confinement fusion
devices and to predict the level of turbulent transport (Barnes et al., 2009). Collisions are not
only a major regulator of low-frequency turbulence and associated transport, but they also
determine the steady state of the system by dictating the long term evolution of the plasma
quantities. Although several theoretical studies have emerged in order to derive an appropriate
Coulomb collision operator for drift-kinetic and gyrokinetic formulations (Brizard, 2004;
Sugama et al., 2015; Burby et al., 2015), such operators still involve a complicated nonlinear six-
dimensional phase-space integral to be performed (Hirvijoki et al., 2017). Due to constraints
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related to code parallelization and computational resources, a numerical implementation of
such intricate formulations of the Coulomb collision operator is still out of reach.

Because of the limitation of current gyrokinetic models, for numerical reasons, and due
to their simplicity, fluid models that incorporate the drift ordering approximation k,; p; < 1
have become the standard for SOL theoretical and numerical modelling (Zeiler et al., 1997;
Ribeiro & Scott, 2008). Notable examples include BOUT++ (Dudson et al., 2009), GBS (Ricci
et al, 2012), GDB (Zhu et al, 2018), GRILLIX (Stegmeir et al., 2018) HESEL (Nielsen et al,,
2015), STORM (Easy et al., 2014), and TOKAM3X (Tamain et al., 2009). Such models are
usually derived from the Braginskii fluid equations (Braginskii, 1965), where the plasma is
assumed to be close to thermodynamic equilibrium because of collisions, i.e., assuming
that the electron v, and ion v; collision frequencies are larger than the typical turbulent
frequencies. For L-mode cold SOL plasmas, fluid models have been successfully benchmarked
against experimental results (Riva et al., 2016; Militello et al., 2016). Moreover, in such regimes,
previous studies on the plasma dynamics at the SOL region (Ricci & Rogers, 2013; Mosetto
et al., 2015) have estimated key SOL parameters such as cross-field transport, plasma scale
lengths, and instability thresholds through a careful combination of linear analysis of the
turbulent modes and turbulent saturation mechanisms, yielding a simple physical picture
of SOL turbulence as the interplay between turbulent transport and plasma losses at the
vessel wall. However, inside the separatrix, in the edge region, although turbulence is still
mediated by low-frequency fluctuations, the plasma becomes hotter, less collisional, and small
scale k; p; ~ 1 fluctuations become important (Hahm et al., 2009). Also, when events such as
ELMs expel large amounts of heat and particles to the SOL and to the wall, the description
of such high-temperature structures requires a kinetic treatment valid at arbitrary collision
frequencies, such as drift-kinetic theory (Hazeltine & Meiss, 2003). These ultimately require to
incorporate the effects of Coulomb collisions using an accurate Coulomb collision operator.

We believe that a model that evolves a set of three-dimensional moments of the kinetic
distribution function represents the best choice to simulate tokamak periphery plasmas in an
accurate and efficient manner. Such a framework has the inherent flexibility of providing a
description that spans from the fluid models, when a low number of moments is used and a
coarse plasma description is needed, to fully kinetic models, for accurate plasma simulations.
To build this model, the plasma distribution function f is expanded in a suitable set of
basis functions, i.e., a set of orthogonal polynomials ensuring that the expansion coefficients
converge rapidly in order to allow manageable numerical implementation and simulations
with a minimum number of terms. In this work, we show that this model, which is indeed a
moment-hierarchy, formulated in terms of Hermite and Laguerre orthogonal polynomials,
fulfills these requirements, and that it can be used to study the dynamics at the tokamak
periphery, both in the fluid and in the gyrokinetic regime. The use of Hermite polynomials
in plasma physics can be traced back to the work of Grad (1963), which used a tensorial
formulation of the Hermite polynomials, the so-called reducible Hermite polynomials [as
opposed to the irreducible ones used in Balescu (1988)]. In fact, the orthogonal basis associated
with a Gaussian weight consists of Hermite polynomials. The Gaussian function is relevant for
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statistical and plasma physics as the long term and stationary solution of the collisional kinetic
equation is given by the Maxwell-Boltzmann distribution (a Gaussian function in velocity
space) (Helander & Sigmar, 2005). We note that, although moment-hierarchy methods have a
long history in plasma physics (Grad, 1963; Braginskii, 1965; Balescu, 1988), only recently such
formulations were developed for arbitrary collisionality regimes, using reducible (Hirvijoki
etal, 2016), irreducible (Ji & Held, 2009), and scalar (Jorge et al., 2017) Hermite polynomials.

1.3 Scope and Outline of the Thesis

With the final goal of gaining a deeper understanding and obtaining a predictive tool for
the plasma dynamics in the periphery region of magnetic confinement fusion devices, in
the present thesis, we develop a moment-hierarchy framework able to evolve the plasma
dynamics at the tokamak periphery. A first-principles model is developed based on the careful
reconstruction of the motion of single charged particles in a regime relevant for the tokamak
periphery. We consider first the drift-kinetic limit assuming k; p; < 1, a regime of interest
for the SOL. Then, gyrokinetic fluctuations at k; p; ~ 1 are included. The collective motion
of particles is described by an appropriate kinetic equation, including the effect of Coulomb
collisions. Aiming for a numerical efficient framework, we expand the distribution function
in a Hermite-Laguerre moment-hierarchy set of equations valid at arbitrary collisionalities,
where the integro-differential character of the Coulomb collision operator is converted into
linear combinations of moments of the distribution function. The feasibility of the numerical
implementation is shown by the study of the linear evolution of electron-plasma waves and
of the drift-wave instability. This study serves not only as a proof of concept of the Hermite-
Laguerre formulation, but it also allows, for the first time, the accurate calculation of the
impact of collisions in such linearized systems at arbitrary collisionalities.

We note that, in the present work, we focus on the electrostatic limit, which requires three
criteria to be satisfied: (1) that § = nTe/(BZ/ZMO) <« 1, (2) that a = BalL, stays below the
electromagnetic ballooning instability threshold, and (3) that the frequency of interest is far
below the shear Alfvén frequency. While condition (1) is, in general, valid across the tokamak
periphery region, condition (2) can be broken down in the edge region in the H-mode regime
and condition (3) may be violated near an X-point where parallel wavenumbers can make
the shear Alfvén frequency similar to the one of the turbulence. Therefore, we note that the
electrostatic approximation employed in this work rules out drift-Alfvén coupling and the
treatment of peeling-ballooning modes in the edge. An extension of the model derived here to
include electromagnetic perturbations will be addressed in a future publication (Frei et al.,
2019). Finally, we point out that the Coulomb collision operator and its velocity moments
derived in this work remain unchanged when electromagnetic perturbations are taken into
account.

This thesis is structured as follows. In Chapter 2, we develop a full-F drift-kinetic model to
describe the plasma dynamics in the scrape-off layer region of tokamak devices at arbitrary col-
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lisionalities, closely following (Jorge et al., 2017). The formulation is based on a gyroaveraged
Lagrangian description of the charged particle motion, and the corresponding drift-kinetic
Boltzmann equation that includes a full Coulomb collision operator. The Hermite-Laguerre
velocity space decomposition of the distribution function is used, and a set of equations to
evolve the coefficients of the expansion is presented, including the moments of the Coulomb
collision operator, therefore describing plasma distribution functions arbitrarily far from
equilibrium. A fluid closure in the high collisionality limit is presented, and the corresponding
fluid equations are compared with previously derived fluid models.

In Chapter 3, a gyrokinetic moment-hierarchy model describing the plasma dynamics
in the tokamak periphery is derived within a full-F framework. With respect to the drift-
kinetic model of Chapter 2, this model evolves periphery turbulence in the presence of time-
dependent electrostatic fluctuations on scale lengths ranging from the ion gyroradius to
typical time-averaged gradient lengths. The formulation is based on a nonlinear second order
accurate gyrokinetic equation, derived from Hamiltonian perturbation theory methods. The
electrostatic field is evolved according to the gyrokinetic Poisson’s equations. A moment-
hierarchy formulation of the resulting set of equations is performed, yielding a fluid-like set of
equations, valid at k; p; ~ 1.

A moment expansion of the Coulomb collision operator valid at arbitrary collisionality and
k) p; ~ 1is presented in Chapter 4. This is done by performing a multipole expansion of the
Rosenbluth potentials, similar to commonly employed multipole expansions in electrostatics
(Jackson, 1998). This allows us to derive the dependence of the full Coulomb collision operator
on the particle gyroangle in terms of scalar spherical harmonics. Finally, the resulting operator
is projected onto a Hermite-Laguerre polynomial basis, yielding analytically closed formulas
for numerically implementation.

In Chapter 5, following (?), the linearized moment-hierarchy equation is numerically
solved to describe the dynamics of electron-plasma waves. The damping rate, frequency and
eigenmode spectrum of electron-plasma waves are found as a function of the collision fre-
quency and wavelength. A comparison is made with the collisionless limit and with simplified
collision operators, where large deviations are found in the damping rates and eigenmode
spectra. Furthermore, we show the presence of a purely damped entropy mode, characteristic
of a plasma where Coulomb collisions are dominant. The dispersion relation of this mode is
analytically derived and compared with numerical results.

In Chapter 6, we focus on the drift-wave instability. We show that the moment-hierarchy
framework allows retrieving established collisional and collisionless limits, closely following
(Jorge et al., 2018). At the intermediate collisionalities relevant for present and future magnetic
nuclear fusion devices, deviations with respect to collision operators used in state-of-the-art
turbulence simulation codes show the need for retaining the full Coulomb operator in order
to obtain both the correct instability growth rate and eigenmode spectrum. We note that,
ultimately, this may significantly impact quantitative predictions of transport levels.
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Finally, in Chapter 7, the results and outlook of the thesis are summarized.
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2 A Drift-Kinetic Model for Scrape-oft
Layer Plasma Dynamics

A physical theory describing the dynamics of magnetized plasma systems is considered to
be closed and, more fundamentally, predictive, if it provides a constitutional relation for the
sources of Maxwell’s equations, namely the charge density p and current density J, in terms of
the electromagnetic fields (¢, A). Kinetic theory achieves this goal by providing a distribution
function f, for each species a in the plasma, where f, is a measure of the number of particles
of species a near point x, having velocity v, at time ¢ per unit volume and is normalized such
that [ fdxdv= N with N the total number of particles in the system. When f, is known, the
charge density and current density can be obtained by taking velocity moments of f;;, namely
with p=Y, g, [ fadvand] =Y, q, [ vf.dvwhere q, is the charge of the species a.

The equation for the evolution of f; is derived from the analysis of the trajectories of
the particles in the plasma. When the details of particular temporal or spatial scales can
be neglected, the equation for the evolution of f,; can be greatly simplified. This is the case
of drift-kinetic theory, where the description of the charged particles inside the plasma is
reduced to the behavior of its guiding-centers (Hazeltine & Meiss, 2003). This is particularly
useful in the SOL, where fluctuations are characterized by frequencies lower than the ion
gyrofrequency (Endler et al., 1995; Agostini et al., 2011; Carralero et al., 2014; Garcia et al.,
2015), and the turbulent eddies, which include coherent radial propagation of filamentary
structures (D’Ippolito et al., 2002, 2011; Carreras, 2005; Serianni et al., 2007), have a radial
extension comparable to the time-averaged SOL pressure gradient length L, (Zweben et al.,
2007).

In recent years, there has been a significant development of first-principles simulations
of the SOL dynamics with both kinetic (Tskhakaya, 2012) and gyrokinetic (Xu et al., 2007;
Shi et al., 2015; Chang et al., 2017; Shi et al., 2017) codes. However, as kinetic simulations
of the SOL and edge regions remain prohibitive as they still are computationally extremely
expensive, the less demanding fluid simulations are the standard of reference. The fluid
simulations are usually based on the drift-reduced Braginskii (Braginskii, 1965; Zeiler et al.,
1997) or gyrofluid (Ribeiro & Scott, 2008; Held et al., 2016) models to evolve plasma density,
fluid velocity and temperature. Fluid models assume that the distribution function is close
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to a local Maxwellian, and that scale lengths along the magnetic field are longer than the
mean free path. However, kinetic simulations show that the plasma distribution function is
far from Maxwellian in the SOL region (Tskhakaya et al., 2008; Lonnroth et al., 2006; Battaglia
et al., 2014) and that collisionless effects in the SOL might become important (Batishchev
etal, 1997). This is expected to be particularly true in ITER and other future devices that will
be operated in the high confinement mode (H-mode) regime (Martin et al., 2008). In such
cases, a transport barrier is formed that creates a steep pressure gradient at the plasma edge.
If the pressure gradient exceeds a threshold value, ELMs are destabilized (Leonard, 2014),
expelling large amounts of heat and particles to the wall. Describing structures with such high
temperatures (and therefore low collisionality) with respect to the background SOL plasma
requires therefore a model that allows for the treatment of arbitrary collision frequencies. A
kinetic full-F description is therefore needed for a proper SOL description (Hazeltine, 1998).

Leveraging the development of previous models (Hammett et al., 1993; Dorland & Ham-
mett, 1993; Beer & Hammett, 1996; Sugama et al., 2001; Ji & Held, 2010; Zocco & Schekochihin,
2011; Schekochihin et al., 2016; Hatch et al., 2016; Parker, 2015; Hirvijoki et al., 2016; Mandell
et al., 2018), we construct here a moment-hierarchy to evolve the SOL plasma dynamics. Our
model is valid in arbitrary magnetic field geometries and, making use of the full Coulomb
collision operator, at arbitrary collision frequencies. The model is derived within a full-F
framework, as the amplitude of the background and fluctuating components of the plasma
parameters in the SOL have comparable amplitude. We work within the drift approximation
(Hinton & Hazeltine, 1976; Cary & Brizard, 2009), which assumes that plasma quantities have
typical frequencies that are small compared to the ion gyrofrequency Q; = eB/m;, and their
perpendicular spatial scale is small compared to the ion sound Larmor radius ps = ¢;/Q;, with
c? = Te/m;, T, the electron temperature, B the magnitude of the magnetic field, e the electron
charge, and m; the ion mass.

In this chapter, we use the methods of Lagrangian mechanics to derive the equations of
motion of a charged particle in an electromagnetic field in the drift-kinetic approximation,
that is, when the magnetic field is slowly varying with respect to the gyroradius, and when
fluctuations occur on spatial scales larger than the ion gyroradius. A detailed description
of the drift-kinetic ordering is provided in Section 2.1. In Section 2.2, we derive the drift-
kinetic Lagrangian and state the equations governing the particle position and velocity in the
drift-kinetic approximation, together with the equation for the evolution of the distribution
function, the so-called drift-kinetic equation. The drift-kinetic equation, when coupled to
Maxwell’s equations, yields a system of equations describing the dynamics of the plasma
system that is, in principle, closed. However, the numerical solution of kinetic models such as
the drift-kinetic one still remains computationally extremely demanding. For this reason, the
drift-kinetic equation is converted into a moment-hierarchy equation for the evolution of the
velocity moments of the distribution function f; using a suitable polynomial expansion of f,
i.e., using a Hermite-Laguerre polynomial basis. The expansion of the distribution function in
a Hermite-Laguerre basis is performed in Section 2.3, while the moment-hierarchy equation
is derived in Section 2.4. A shifted-velocity formulation, which retains the presence of a finite
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flow velocity in the Hermite-Laguerre basis and better captures strong near-Maxwellian flows
with fewer expansion coefficients, is used. A particular novelty of the framework derived here
is the inclusion of collisions by evaluating explicitly the velocity moments of the full Coulomb
nonlinear collision operator (the prefix full is used here to state that both like-particle and
unlike-particle collisions are included). This allows us to describe turbulent systems arbitrarily
far from equilibrium using a model that is particularly efficient for numerical implementation.
In Section 2.5, the system of equations is closed by deriving Poisson’s equation in terms of
coefficients of the Hermite-Laguerre expansion of the distribution function. Finally, a a fluid
model based on the truncation of the Hermite-Laguerre expansion in the high collisionality
regime is presented, which allows the comparison to well-known fluid models used to describe
the plasma dynamics in the SOL. The conclusions follow. We note that the results described in
the present chapter have been published in Jorge et al. (2017).

2.1 Ordering

Denoting k; ~ |V log¢| ~ |V logn| ~ |V logT,| and w ~ |0;log¢p| ~ |0;logn| ~ |6;1og Tel,
with ¢ the electrostatic potential, we introduce the drift-kinetic ordering parameter € such
that!

k
€~kLps~k—J”_<<1. @.1)

On the other hand, we let k) L), ~ 1 since turbulent eddies are observed to have an extension
comparable to the scale lengths of the time-averaged quantities. These assumptions are in
agreement with experimental measurements of SOL plasmas (LaBombard et al,, 2001; Zweben
et al., 2004; Myra et al., 2013; Carralero et al., 2014). We set turbulence to be correlated along
the magnetic field lines by ordering w ~ k¢, (see Footnote 1), such that

w 2

— ~€°, 2.2

Q, (2.2)
an ordering in agreement with previous drift-reduced fluid models for the SOL (Zeiler et al.,
1997; Catto & Simakov, 2004). We also order the electron collision frequency v,; as

M~e <e€ (2.3)
Qi v » .

In addition, the ion collision frequency v; =v;; is ordered as v;; < €2Q; that, noticing v; ~

lWwe note that while this ordering differs from the one presented in Jorge et al. (2017), the set of equations
presented to describe SOL plasmas remains unchanged. We also point out that the ordering  ~ k| cs may become
marginal near separatrix where k| decreases to values below than w/cs.
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Vel mi(T./ T;)3?v, (with v, = v,;), yields

2/3 1/3 .

&v Mme < ﬂ <1. (2.4)
2 ~Y ~Y

€ m; T,

The ordering in Eq. (2.4) can be used to justify applying our model in the cold ion limit,
T; < T,, but allows for T; ~ T,. We note that in the SOL the ratio T;/ T, is typically in the range
1< T;/T, <4 (Kocan et al., 2011). Furthermore, it is seen that the ion temperature in this range
of values plays a negligible role in determining the SOL turbulent dynamics, usually due to a
steeper electron temperature profile compared with the ion one, which is usually below the
threshold limit of the ion temperature gradient instability (Mosetto et al., 2015).

The ordering in Eqgs. (2.1)-(2.4) is justified in a wide variety of experimental conditions. For
example, for a typical JET discharge (Erents et al., 2000; Liang et al., 2007; Xu et al., 2009) with
the SOL parameters By =2.5T, Te ~ T; ~20 €V, n, = 10 m=3, and k; ~1 cm™!, we obtain
€y ~0.016 and € ~ 0.0182. For a medium-size tokamak such as TCV (Rossel et al., 2012; Nespoli
etal., 2017), estimating By = 1.5T, T, ~ T; ~40 eV, n, =6 x 10'®, and k; ~ 1 cm™!, we obtain
€y ~6.2x 1073 and € ~ 0.043. Finally, for small-size tokamaks such as ISTTOK (Silva et al., 2011;
Jorge et al., 2016), with By =0.5T, T, ~ T; ~20 eV, n, ~ 0.8 x 10'8, and k, ~ 1 cm™!, we obtain
€y ~0.0072 and € ~ 0.091. Lower values of ¢,, as in the presence of ELMs where temperatures
can reach up to 100 eV (Pitts et al., 2003), are also included in the ordering considered here.
We note that the orderings in Egs. (2.1) to (2.3) imply that

2

kyAmgp ~ %j—v (2.5)
which includes both the collisional regime kj1,,7, < 1, when €, ~ ¢, and the collisionless
regime (kA f,,)‘1 < 1, when €, < €. Finally, the plasma parameter 8 = nT,/(B?/2pup) is
ordered as 8 ~ €3, implying that our equations describe plasma dynamics in an electrostatic
regime. Although electromagnetic effects can lead to a non-negligible enhancement on heat
and particle transport in the SOL (LaBombard et al., 2005), we focus on devices with low-
enough f such that the value of the MHD ballooning parameter amup = BR/ L), stays below
the electromagnetic balloning instability threshold. We refer the reader to Halpern et al.
(2013a) for a detailed treatment of electromagnetic effects in the SOL within the drift-reduced

fluid description and here we consider the electrostatic limit.
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2.2 SOL Guiding-Center Model

2.2.1 Single-Particle Motion

To derive a convenient equation of motion in the presence of a strong magnetic field B, we
start with the Hamiltonian of a charged particle of species a (Jackson, 1998),

_[p-q.AQ@7

H,(q,p) = om +qq.9(q), (2.6)

and its associated Lagrangian,

Mg v?

+qapX) |, 2.7)

Lax,V) = [q.AX) + mgv]| X —

where p = q,A+ m,v is the canonical momentum conjugated to q = X, v is the particle velocity,
A is the magnetic vector potential, ¢ is the electrostatic potential, m,, is the mass of the particle
and q, its charge.

We now perform a coordinate transformation from the phase-space coordinates z = (x,v)
to the guiding-center coordinates Z = (R, v|, u, 0) by writing the particle velocity as [see, e.g.,
Littlejohn (1983)]

v=U+7/c (2.8)
with
U=vs(R) + vybR), (2.9)

and v = E x B/ B? the E x B velocity. The gyroangle 6, defined as

v-0)- e
v-U)-e;

0 =tan™! (2.10)

is introduced by defining the right-handed coordinate set (e;,e,b), such thatc=-axb =
da(0)/d0, with a = cosfe; +sinfe,. The decomposition in Eq. (2.8) allows us to isolate the
high-frequency gyromotion contained in the v/ ¢ term, from the dominant guiding-center
velocity U. The adiabatic invariant yu is defined as

My vf

= 2.11
iy (2.11)

whereas the guiding-center position is

R=x-p.a, 2.12)

with p, = \/2m,u/(g2B) the Larmor radius. Incidentally, for the case of weakly varying
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magnetic fields, Eq. (2.12) describes the circular motion of a particle around its guiding-center
R with radius pg, i.e., x—R)? = p2.

As our goal is to develop a model that describes turbulent fluctuations occurring on
a spatial scale longer than the sound Larmor radius pg, and a time scale larger than the
gyromotion one, we keep terms in the Lagrangian up to O(e) and order T; ~ T,, which implies

kip;~e. (2.13)
We therefore expand the electromagnetic fields around R, to first order in e, i.e.,
$x) =d([R) +pga- Vrp(R), (2.14)

and similarly for A. In the following, if not specified, the electromagnetic fields and potentials
are evaluated at the guiding-center position R, and we denote V = Vg. In addition, to take
advantage of the difference between the turbulent and gyromotion time scales, we use the gy-
roaveraged Lagrangian (L,)g to evaluate the plasma particle motion, where the gyroaveraging
operator () acting on a quantity y(0) is defined as
1 2n
=— 0)de, 2.15
(Or 27 Jo x(©0) (2.15)

which is performed at fixed guiding-center coordinates R, vj and p.

To evaluate (L,)g we note that, with the expansion for ¢ and A, the Lagrangian in Eq. (2.7)
can be expressed as L, = Lo, + L14 + L, where Ly, is gyroangle independent,

2 2
Mmgq V” + mg UE

Loa = (gaA+mgU)-R— — UB+qa|, (2.16)

Ly, is proportional to p2 (and hence to ) and is order €°
Lig=0%q40 @ V) (A-¢) + map2Q0 + papa|ga(@a- V) (A-a)], 2.17)

and the L, contribution contains the terms linearly proportional to cosf or sinf (Cary &
Brizard, 2009) which are not present in (L,)g, as (]:a>R =0.

We note that (L ;)g can be simplified since {(a- V)A-c)g = —b-(VxA)/2,and {(a:- V)A-a)g =
V) -A/2. Subtracting the total derivative —q,d/d t(pflV 1A)/4 from (L,;)g, which does not alter
the resulting equations of motion, we redefine the gyroaveraged Lagrangian as

2 2
mgq U” + meg UE

(La)r = (9aA+ maU) -R- 5 5

+Qa¢)_I~LB(1__'a

We now order the terms appearing in (L,)g. As imposed by the Bohm sheath conditions
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(Stangeby, 2000), both electrons and ions stream along the field lines with parallel veloc-
ities comparable to the sound speed ¢; = v/T,/m; in the SOL. The Bohm boundary con-
ditions at the sheath also set the electrostatic potential e¢p ~ AT, across the SOL, where
A =Inv/m;/(m.2m) = 3. Therefore, we keep the m, v%/ 2 term in the Lagrangian in Eq. (2.18),
as to take into account the presence of the numerically large factor A? in v% ~€e2N2c2.

By neglecting the higher-order terms in Eq. (2.18), i.e., —(p%/4)d [V1 - (q4A)]/dt, the
expression for the gyroaveraged Lagrangian describing SOL single-particle dynamics, up to
O(e), can be written as

2 .
mg U” mae
_—y—

(La)R=qaA" -R—gap™ — p—=. 2.19)
2 qa
where
Gad” = Gatp+ Maqv5/2+uB (2.20)
and
GaA" = qaA+ mav b+ mgvg. (2.21)

The Euler-Lagrange equations applied to the Lagrangian in Eq. (2.19) for the coordinates 0, v,
and g, yield, respectively, 1=0, vy =b-R, and 6 = Q. For the R coordinate, we obtain

mab=q.(E* +RxB"), (2.22)

where the relation [VA—(VA)T]-R = Rx (V xA) has been used, and we defined E* = -V¢*—d,A*,
and B* =V x A*, with the parallel component of B* given by

B|T=B*-b=B+%b-Vx(v”b+vE). (2.23)
a

By projecting Eq. (2.22) along B*, we derive ml'}”BlT = eE* -B*, while crossing with b yields the
guiding-center velocity RBﬂ‘ = v B* + E* x B/B. Using the expressions for the fields E* and B*,

we obtain
. B dU uvB
R=U+ x| —+ , (2.24)
QaBﬁ‘ dt  mg
and
. db
Ma V)| = qaE| — V| B+ mgVEg - T masd, (2.25)

In Egs. (2.24) and (2.25), in addition to the time derivatives of the phase-space coordinates
R, 7, that only have an explicit time dependence, we define the total derivative d/dt of a field

19



Chapter 2. A Drift-Kinetic Model for Scrape-off Layer Plasma Dynamics

¢ (R, #) that has an explicit time and R dependence as

o _o¢

= V. 2.26
ar o TUVe (2.26)

The o/ term represents the higher-order nonlinear terms in 7 that ensure phase-space con-
servation properties (Cary & Brizard, 2009), and it is given by

*
B,

dat

_B(dU

V,B]: R 2.27
J_'f‘,UJ_) a ( )

with d,;U|; = -b x (b x d,U).

The guiding-center equations of motion (2.24) and (2.25) satisfy the energy, Egc = qq¢* +
mgy vﬁ/ 2 (Cary & Brizard, 2009), and momentum, Pg. = eA* (Cary & Brizard, 2009), conserva-
tion laws, given by

dEgc  0p*  OA”

dt —an_CIa Y ‘R, (2.28)
and
apgc % % o
e =—q,Vo* +q.VA" -R. (2.29)

In addition, we note that using Egs. (2.24) and (2.25) and Maxwell’s equations, a conservation
equation for Bﬁ‘ can be derived

0By 0
—L+V-®B])+ 5 — (1B} ) =0. (2.30)
ot I av) I
Since Bﬁ‘ is the Jacobian of the guiding-center transformation, Eq. (2.30) is in fact the phase-
space volume conservation law for the guiding-center system of equations (also called Liou-
ville’s theorem), reflecting therefore their Hamiltonian nature.

2.2.2 The Guiding-Center Boltzmann Equation

The Boltzmann equation for the evolution of the distribution function f,(x,v) of the particles
in (x,v) coordinates is

0 . )

ait"+x~vxfa+v-vvfa=(:(fa), 2.31)
where C(fy) = Y, C(fa, f5) = Xp Cap is the collision operator. Because f, can significantly
deviate from a Maxwellian distribution function in the SOL (Battaglia et al., 2014), we consider
the bilinear Coulomb operator C,;, (Balescu, 1988), to model collisions between particles of
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2.2. SOL Guiding-Center Model

species a and b

Cab = Lap aa a(igz] % _ Z_Z 6;:9 .l (2.32)
with

Hp = f |f o) 4y, 2.33)
and

Gbefb(V')IV—V'IdV', (2.34)

the Rosenbluth potentials satisfying V2 Gj, = Hyp,. In Eq. (2.32) we introduced L, = g qb/l/ (47'[6‘0
Vab u o/ b, where A is the Coulomb logarithm, v, the collision frequency between species a
and b, and vtha =2T,/mg,.

Taking advantage of the small electron to ion mass ratio, the collision operator between
unlike-species can be simplified [see, e.g. Balescu (1988); Helander & Sigmar (2005)]. The
electron-ion collision operator, to first order in m,/m;, is given by the operator C,;(fe) =

C0 + C;l, where CO is the Lorentz pitch-angle scattering operator

0 _ niLei 0 1 afe Ce 6fe
ei—S—a—' _6_—_3 Ce (2.35)
v, 0 LCeOce c; oc,
and C.; the momentum-conserving term
2n;L
Chi = =5 fueti -Ce. (2.36)
the~€

with ¢, = (v—ug,)/vsp4. Ion-electron collisions, to first order in m,/m;, are desribed using the
operator

R ofi ne me 0
Cie:#.lwei_e_e_.(ciﬁ

Te af’) (2.37)
m;n;Veni ac,- n; m; 6c,~ '

T,G

where R,; = [ mvC,;dv is the electron-ion friction force. We take advantage of Eq. (2.3) to
order the electron collision frequency v, and the ion collision frequency v; as

, T.\3/2
Vi [Me (_9) e, <é2, (2.38)
Q; m; \ T;

where we used the relation v; ~ vmo/m;(T./ T;)3%v,. The orderings in Eqgs. (2.14) and (2.38)
yield the lower bound in Eq. (2.4) for the ion to electron temperature ratio.

We now express the particle distribution function f, in terms of the guiding-center coordi-
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Chapter 2. A Drift-Kinetic Model for Scrape-off Layer Plasma Dynamics

nates by defining F,, a function of guiding-center coordinates, as
FaR, v, 1,0) = faX(R, vy, 1,0),v(R, vy, w1, 0)). (2.39)

Using the chain rule to rewrite Eq. (2.31) in guiding-center coordinates, we obtain

aF“+R VFE,+ v 6F“+ 'aF“+éaF“ C(F,) (2.40)
— . V — —_— —_—= y .

a1 0 " ou T a0 a

where R and v are given by Eq. (2.24) and Eq. (2.25) respectively, 0 = Q,, and i = 0. Equation
(2.40) can be simplified by applying the gyroaveraging operator in Eq. (2.15). This results in
the drift-kinetic equation

6<Fa>R 6<Fa>R

v

+R-V(F)r+ 7 =(C(F))R- (2.41)

We now write Eq. (2.41) in a form useful to take gyrofluid moments of the form [ (F,)r Bdv,dud6

(see Section 2.4). Using the conservation law in Eq. (2.30) for B, we can write the guiding-
center Boltzmann equation in conservative form as

3(B; (Fa)R)
ot

0(Dja B} (Fa)w)

+V - (RB] (Fa)g) + 5
Y|

= B|T (C(F))R- (2.42)
Moreover, in order to relate the gyrofluid moments [ (F,)g Bdv|dud6 with the usual fluid
moments | f,d>v, we estimate the order of magnitude of the gyrophase dependent part of
the distribution function F, = F, — (F,)g where (F;)g obeys Eq. (2.41). The equation for the
evolution of F, is obtained by subtracting Eq. (2.41) from the Boltzmann equation, Eq. (2.40),
that is

0F, . _. . 0F, oF,

— +R-VF, + vy — +Qu—— = C(F,) — (C(F, . 2.43

ot a Vllav|| 50 (Fa) —{C(Fa)r ( )

Using the orderings in Egs. (2.3) and (2.38), aswell as 0; ~ R-V ~ U0y, ~€Q;and 0y ~ 1, the
comparison of the leading-order term on the left-hand side of Eq. (2.43) with the right-hand
side of the same equation imply the following ordering for F,

F
e [Me. <&, (2.44)
(Fo)r My
and F;
F m T 3/2
i [me (_e) e, <é2. (2.45)
(Fi)r m; \ T;

To evaluate the leading-order term of F,, we expand the collision operator C(F,;) = Co({Fz)Rr) +
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2.3. Moment Expansion

€C1(Fy) + ..., such that

I
Fa= - fo [CollFa)r) = (Co((Fa)p)r] A6’ + O (Fa)g). (2.46)
a
The relation in Eq. (2.46) can be further simplified by expanding the 6 dependence of F, in
Fourier harmonics,
Fu=Y €™ Fp, 2.47)
m

so that for m = 0 we have (F,;)g = Fy,, and similarly for Co((F;)r)
CollFayr) = Y €™ Cpyg. (2.48)
m/

We can then write Eq. (2.46) as

I Cma
Frna= , 2.49
ma= . (2.49)

for m #0.

2.3 Moment Expansion

We now derive a polynomial expansion for the distribution function (F,)g that simplifies
the solution of Eq. (2.42), with the collision operators in Egs. (2.32) - (2.37). This section
is organized as follows. In Section 2.3.1 the Hermite-Laguerre basis is introduced, relating
the corresponding expansion coefficients for (F,)g with its usual gyrofluid moments. In
Section 2.3.2, we briefly review the fluid moment expansion of the Coulomb collision operator
presented in Ji & Held (2006, 2008). In Section 2.3.3, leveraging the work in Ji & Held (2006,
2008), we expand Cgy, in terms of the product of the gyrofluid moments, for both like- and
unlike-species collisions which, ultimately, allows us to solve Eq. (2.42) in terms of gyrofluid
moments.

2.3.1 Guiding-Center Moment Expansion of (F;)g

To take advantage of the anisotropy introduced by a strong magnetic field, and efficiently
treat the left-hand side of Eq. (2.42) where the parallel and perpendicular directions appear
decoupled, we express (F;)gr by using a Hermite polynomial basis expansion for the parallel
velocity coordinate (Grad, 1949; Armstrong, 1967; Grant & Feix, 1967; Ng et al., 1999; Zocco
& Schekochihin, 2011; Loureiro et al., 2013; Parker & Dellar, 2015; Schekochihin et al., 2016;
Tassi, 2016) and a Laguerre polynomial basis for the perpendicular velocity coordinate (Zocco
etal, 2015; Omotani et al., 2015; Mandell et al., 2018). More precisely, we use the following
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expansion

00 pj
(Fa)r= Y. —2—=FmaHy(s1a)L;(s7 ), (2.50)

p,j=0 Vv zpp'

where the physicists’ Hermite polynomials H), of order p are defined by the Rodrigues’ formula
(Abramowitz et al., 1965)

ar 2
—(_1\P X -x
Hy(x)=(-1D"e dxpe , (2.51)
and normalized via
o0 2
f dxH,(x)Hy (x)e™ =2P pl/7b ppr, (2.52)
—00

and the Laguerre polynomials L; of order j are defined by the Rodrigues’ formula (Abramowitz
etal., 1965)

_ e’ dj -X .
Li(x)= ﬁﬁ(e x’), (2.53)

which are orthonormal with respect to the weight e™*

f dej (x)Lj/(x) e‘x = 5]']'/. (2.54)
0

Because of the orthogonality of the Hermite-Laguerre basis, the coefficients N 7 of the expan-
sion in Eq. (2.50) are

, Hy,(sja)Li(s*> )(F,
NP/ = if pBIa) L (510)¢ a>R£dudv”d9, (2.55)
Na A /2pp! ma

and correspond to the guiding-center moments of (F;)g.

In Eq. (2.50), the shifted bi-Maxwellian is introduced

—82 _82
e “la “la
FMa = Na (2.56)

312 2z
" VthlaVip, q

where s|, and s, 4 are the normalized parallel and perpendicular shifted velocities respectively,
defined by

VI —Uu 2T
Sla=——2, p2, =20 2.57)
Uthlla ur
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and
2
v B 2T
2 =L _ “_, p2 =fta (2.58)
la 1}2 T thla m
thla la a

which provide an efficient representation of the distribution function in both the weak (i), <«
Vtha) and strong flow (u, ~ vyp,) regimes by better capturing strong near-Maxwellian flows
with fewer expansion coefficients (Hirvijoki et al., 2016).

The guiding-center density N,, appearing in Eq. (2.56), the guiding-center fluid velocity
U|q, in Eq. (2.57), and the guiding-center parallel T}, = P,/ N, and perpendicular T, =
P, 4/ N, temperatures in Eqgs. (2.57) and (2.58) are defined as N, = |[1l|lq¢, Natja = llv)lla,
Pja = mql|(v) = ua)*lla, and P14 = ||uBl|a, Where

B
lglla = f 1 Fadr — dud vy do. (2.59)
Mg

The definition of Ny, u)4, Pj4, and P, , implies that N9 =1, N1® =0, N20 =0, NO! =0,
respectively. Later, we will consider the parallel and perpendicular heat fluxes, defined as

Qja = mgl|(v) — u|\a)3||a, Qira=lv) — uya)uBlla, (2.60)
which are related to the coefficients N3° and N! by

N3O = Qla N = V2Qiq4

— ) - _ . (2.61)
a \/§P||al/[ha|| P, Vthal

2.3.2 Fluid Moment Expansion of the Collision Operator

A polynomial expansion of the nonlinear Coulomb collision operator in Eq. (2.32) was carried
out in Ji & Held (2009), while the treatment of finite fluid velocity and unlike-species collisions
is described in Ji & Held (2008). This allowed expressing C,j;, as products of fluid moments
of f, and f. We summarize here the main steps of Ji & Held (2006, 2008). For an alternative
derivation of the fluid moment expansion in terms of multipole moments of the Coulomb
operator, see Chapter 4.

Similarly to Eq. (2.50), the particle distribution function f, is expanded as

oo Ll+1/2(C2)Pl(C )-M Lk
fa=fa ¥, —24 % % 2.62)
1,k=0 0'56
where
n
fam = =5 m—e (2.63)
T Vtha
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is a shifted Maxwell-Boltzmann distribution function, and c, the shifted velocity defined as
cq = (V—=Ug)/ Vipq, with U, = yj4b +u 4 the fluid velocity. The fluid variables n4,U,, and T,
are defined as the usual moments of the particle distribution function f,, i.e. n, = [ fad?’v,
nUg= [ favd3v, n,T,= [mfy(v—uy)?d3v/3.

The tensors Pﬁ,k (€)= P! (ca)L;:” 2(02) constitute an orthogonal basis, where P! (cq) is the
symmetric and traceless tensor

[1/2] . .
Plca) = ). disicZ {iel}, (2.64)
i=0

with I denoting the identity matrix, {A’} denoting the symmetrization of the tensor A’, |1/2]
denoting the largest integer less than or equal to //2, and the coefficients d ll and Sﬁ defined by

; =2iel-200

- , 2.65
! @niil-i! (2.65)
and
I
Sl 2.66
bo(I-20)28! (2.66)
The tensor P!(c,) is can be also computed using the recursion relation
2 9Pl (c)
Pl+1 — Pl _ c 2.
(€)= cP(©) 2l+1 Oc (26D
and is normalized via
f dvP"W)P'w)-M'g(v) =M"8,,,0, f avv’g(v), (2.68)

witho;=1!/ [2L(I+1/2)!]. We note that the tensor A’ is formed by i multiplications of the A
elements (e.g., if A is a rank-2 tensor, A3 = AAA, which in index notation can be written as

A% j1iemn = Aij Atk Amn).

In the expansion in Eq. (2.62), L;C“/ 2(x) are the associated Laguerre polynomials

k
L2 =Y Lh x™, (2.69)
m=0
normalized via
o0
f e xR LH2 (0 L2 () dx = AL 6 . (2.70)
0

with AL = I+ k+1/2)l/kland L} = (D)™ (I + k+1/2)1/[(k—m){(I+ m+1/2)!ml]. The o} =
01/15C term is a normalization factor from the orthogonality relations in Egs. (2.68) and (2.70).
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Finally, the coefficients of the expansion in Eq. (2.62) Mék are

1+1/2( 2\ pl
1 L7 (cq)P (cq)
Mk =— | avf,t—=—, @.71)
n !
a O-k
which correspond to the moments of f,; due to the orthogonality relations in Egs. (2.68)

and (2.70).

By using the expansion in Eq. (2.62) in the collision operator in Eq. (2.32), a closed form
for C,p, in terms of products of M4¥ can be obtained. For like-species collisions it reads

o oo k ngcLZr lom engr
m
Caa= Y. 3 3 Y —Le(pibm, o), 2.72)
1,k=01n,q=0m=07=0 , /gl g7
k7 4a
with
Ik nqr min(2,l,n) . , min(l,n)—u ] . o i Ik i ng
—-u,n—u - ~
C(fa m, a ):faM Z V*’géﬁtr(ca) Z di P (H—u)(ca)'(Ma 'HuMa )TS)
u=0 i=0

(2.73)

where ¢, = ¢4/cq, -" is the n-fold inner product (e.g., for the matrix A = A;;, (A-IA)l-j =
Yk AkiAkj), and (A) rs the traceless symmetrization of A (e.g., (A) s = (A,-j+Aji)/2—5ij Yk Ark/3).
We refer the reader to Ji & Held (2009) for the explicit form of the yimrr oo efficients.

*abu

2.3.3 Guiding-Center Moment Expansion of the Collision Operator

In order to apply the gyroaveraging operator to the like-species collision operator C,, in
Eq. (2.72), we expand the fluid moments as Mflk = Mgf) + eMﬁlk1 + ..., aiming at representing the
collision operator up to O(e,€). An analytical expression for the leading-order Mfl’f) in terms of
guiding-center moments N/ J can be obtained as follows. By splitting f = (fa)g + fa when
evaluating the fluid moments Mék according to Eq. (2.71), we obtain

L;:l/Z(Caz)Pl(cla)
[
V%
where the Dirac delta function was introduced to convert the velocity integral into an (x,v)
integral that encompasses the full phase-space. Since the volume element in phase space can

be written as d3xd3v = (Bl’l" Im)dRdv,dud0 (Cary & Brizard, 2009), and defining x' =R+ pg,a,
we can write the fluid moments in Eq. (2.74) as

Mi,k = nidex'd3 Vo —x) ((fa)R+fa). (2.74)

1 B* Ll+1/2(c’2)Pl(cl) _
Mk = n—dedv”dde L s5x—R-paa)—E—2— % ((F g+ Ea). 2.75)
a a

m 7
VO%k
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where (f,)g and f, in Eq. (2.74) are written in terms of guiding-center coordinates using
Eq. (2.39). Neglecting the higher-order p, and F, terms, the leading-order fluid moments M;’f)
are given by

I |* Ll+1/2(C2)Pl(C )
M, = —fdl}” d/.ld@— (F)R- (2.76)

mg )
V%

The 6 integration can be performed by making use of the gyroaveraging formula of the P

tensor
(Pl(ca))r = ctP1 ()P (D), 2.77)

where ¢, = ¢, -b/c, is the pitch angle velocity coordinate, and P; is a Legendre polynomial
defined by

Pi(x) = (x*-1) ] (2.78)

zll'd l[

and normalized via

flP(x)P (xX)dx = Ou (2.79)
o 14172 .
yielding
P B* Ll+l/2(C'2)ClP ((-;: )
Mk = (b )fdv”d do—- ket gy, (2.80)

I
Vk

For the derivation of Eq. (2.77), see Section 4.3. Finally, we use the basis transformation

L/ 1+2k k+11/2] i
chPIEQLM (R =Y Z TV Hy(s1a)Lj(s1,), (2.81)
p=0
with the inverse
2 QSRR Tk 1+1/2
Hy(dList )= Y Y (T2, caPi€aly! (), (2.82)
I=0 k=0

to obtain an expression for the integrand in Eq. (2.80) in terms of the Hermite-Laguerre basis. A
numerical evaluation of T: l]k and (T p );k] was carried out in Omotani et al. (2015). Instead, in
Appendix A, we derive the analytic expressions of both T(f l]k and (T,! ) i Using the definition

of guiding-center moments Ng j in Eq. (2.55), the leading-order fluid moment Mé’f) is then
given by

n Mk = NP (b). 4K, (2.83)
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where we define

1+2k k+|1/2] pj pj zpp|
Hk=y ¥ T NG [ (2.84)
p=0  j=0 Ok

The leading-order part C,,40 of the collision operator C,, can be calculated by approximat-
ing Mﬁlk appearing in Eq. (2.73) with M;’f). For the ions, the largest contribution to Mgk - Mf’g is
of order € and it is given by the p; appearing in Eq. (2.75) [the F; correction is smaller since
F; < €? (Fj)R, see Eq. (2.45)]. Therefore, by using the ordering in Eq. (2.38), the largest correc-
tion to C;;q is O(v/me/m;ee,). The correction to C,,g is of the same order. It follows that we
can approximate C,, appearing in Eq. (2.73) with C,,4 to represent the collision operator up
to O(eye).

As an aside, we note that the relationship between the guiding-center and fluid moments
in Eq. (2.83) provides, for the indices (/, k) = (0,0),

na= Ny, (2.85)

while, for ([, k) = (0, 1), yields

B THa+2TJ_a

3 (2.86)

Moreover, the ([, k) = (2,0) moment provides a relationship useful to express the viscosity
tensor I, = [(c ¢, — c21) fodv as

a=bbN(T)s—T14), (2.87)

while for (I, k) = (1,1) gives

Q= (QJ“ + QJ_u) (2.88)

with q, the heat flux density q, = m [ ¢,c2 f,dv/2.

In order to express the Boltzmann equation, Eq. (2.42), in terms of the guiding-center
moments N}/, we evaluate the guiding-center moments of (C,,)g which, up to O(e?), are
given by

; Hy(sja)Lj(s% ) B
ngjl /(CaaOR P v ) la

dl/|| dude. (2.89)
217 p' mg

By using the gyroaveraging property of P!(c,) in Eq. (2.77) in the like-species operator in
Egs. (2.72) and (2.73) (with Mg‘ = Mé’f)), and the relation between Mﬁl’f) and N7/ in Eq. (2.83),
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the gyroaveraged collision operator coefficients (c ékm, o qr))R are given by

” nar min(2,l,n) ; ) min(l,n)—u ! ” ng 1
) —u,n—-u n
<C(fa m’fa 1 )>R = faM Z V*Zla'f[ (Ca) Z di Pl+n—2(i+u) (é)ﬂa */Vu ‘@i+u’
u=0 i=0

(2.90)

with @l = pl+n-2(i+u)  (pl.i+upny,.. Using the basis transformation of Eq. (2.82) to ex-
i+u g q

press Hy(s)a)Lj(s? ;) in Eq. (2.89) in terms of ¢} P;(€4)L}*'/?(c2), and performing the resulting

integral, we obtain

min(2,l,n) min(l,n)—u p+2j j+1p/2]

cr=y s YRR S S

Lkng u=0 i=0 e=0 =0 g=0m=0r=0
LL L7 L8 dlmvn v ceglmnr (2.91)
km—qr=fg™i *aau 5 T_1 efﬂlkwnq@l,n
Pl e,l+n72(i+u)( )pj a a i
allcag(e+ 1/2)dx  V&"p:
ith ¢/""™ 2w+] ; —_ , jw,im,
with CI! " = [ dve, "™ FaaviIT [for an efficient algorithmic representation of C o

see Ji & Held (2009)].

We now turn to the electron-ion collision operator, C,; = Cgl. + C; ;» with Cgl. given by

Eq. (2.35) and C!; given by Eq. (2.36). As the basis L;*!/?P!(c,) is an eigenfunction of the
Lorentz pitch-angle scattering operator Cgi with eigenvalue —I(I+1) (Ji & Held, 2008), we write
CO. as

el

niLei 1(1+1)
Coi=—2. 33 feMLi”’Z(Cﬁ)P’(ce)-Me’k. 2.92)

Lk Vine®e /ot

Similarly to like-species collisions, we approximate Mék = Mé’é in Eq. (2.92), representing Cgl.
accurately up to O(e,€). Using the basis transformation in Eq. (2.82) and the gyroaverage
property of P(c,) in Eq. (2.77), we take guiding-center moments of C,; of the form (2.89), and
obtain

pj Ifk Ik Uy 16 F(f+3/2)
J_ L PN Al ik s =2 ,
et 8m3/2 ;) ]g‘o V2P p! ]CX:‘E) et ¢ bl Uthe 3 f'\/ﬁ

where the A,; coefficients are given by

(2.93)

b ver PRI (TN [ o

l l
I+ a2t Lok Ly, L

i T 4172 2D =2 Vol

where we used the identity [P!(b)|? = 2/(1)2/(2])! (Snider, 2017).

Finally, for the ion-electron collision operator, C;., we neglect O(v/m./m;e,€) corrections
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by approximating F; = (F;)g, and use the transformation in Eq. (2.8) to convert the C;, operator
in Eq. (2.37) to guiding-center variables, yielding

R,; m;v?,. o (F; d(F;
Cie= L ey — SN eie 2e |3 (Fyyg
min;Vehi B a[.t 6c||,~ m; n;
. . 2(F. ;
vy QR O | Te 0 <FL>R+@3( 0<FL>R) | .95
ocy; ou 2T; acﬁi B ou ou

By evaluating R,; at the guiding-center position R (neglecting higher order € effects), we write
Rei-b=N.m, uth”ecg?/\/i + O(vm./ m;jey€) and gyroaverage Eq. (2.95), yielding

(C; >R_ C_;?%%_U[h”ea<Fi>R v '%& 3(F'>R
ie - el .
V2 mi ni vepji o 05 mi ni (2.96)
d(Fi)r 0(F)r . Te 0°(Fpp 2T, 0 ( O(F)R |
+S8) +20 + >t au '
ds|; Op 2Ty os;; B opl op

where we used cﬁi = sﬁi Tyi/ T;. Taking guiding-center moments of the form (2.89) of (C;.)g in

Eqg. (2.96), we obtain

. m .
Cll=va—) BN/, (2.97)
m; "1
with
10
P T Vinje Co
B! =2j61,6kj1 (1——6)—\/5—8 L 81p-10k)
T, Vth|i Vei (2.98)

. T
—(p+2))61p0kj+ VPP —1b1p-20k; (T—”e - 1)-
l

2.4 Drift-Kinetic Moment-Hierarchy

In this section, we derive a set of equations that describe the evolution of the guiding-center
moments N I , by integrating in guiding-center velocity space the conservative form of the
Boltzmann equation, Eq. (2.42), with the weights H,(s)4)L j(si 4)- First, we highlight the
dependence of R and 7 on s), and s% _ by rewriting the equations of motion as

R=Uo,+ U, + 57 Usp, + 5T, Ub, + SjaWinab + UL, (2.99)
and

Ma0) = Fla— 1 ,Fya+ SjaF s — masd. (2.100)
In Egs. (2.99) and (2.100), Uy, = Vg + y)4b is the lowest-order guiding-center fluid veloc-

ity, U;Ba = (T a/myz)(b x VB/Q} B) is the fluid grad-B drift, with Q} = q“BIT/m“’ U]’ia =
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Chapter 2. A Drift-Kinetic Model for Scrape-off Layer Plasma Dynamics

2T)a/ ma) (b x k/Qp) is the fluid curvature drift with k = b-Vb, Uy, = (b/Q7) x doUoa/dt
is the fluid polarization drift, Fj, = q.E| + mavg - dob/dt, Fyrq = T1 4V InB is the fluid mirror
force, and both U*’ " and F, ' are related to gradients of the electromagnetic fields

b
U = vipja=s x (b- Vg + Vg Vb +2u.k),

Q*
a (2.101)
th b xk
Fpq=maVp|aE- (T)
The fluid convective derivative operator is defined as

dOa
=0;+U 2.102
dt t O0a" ( )

Next, to obtain an equation for the moment N7 7 we apply the guiding-center moment
operator

P = (81 Lj(s7 ) By ]

x4

1 By Hy(s1a)Lj(s7 ) (2.103)
= F[X_Uja) e ——

V2P p!

to Boltzmann’s equation, Eq. (2.42). By defining ||1||,” J = N, J such that

dvydudo,

. (. b-V b-Vxb
Nap]:N§](1+—XVE - )

a “ (2.104)

(\/_N”“’+\/_N” 11)

b-Vxb
+Vth||a\/§

and

d*Pj . 0 .
G LW

the drift-kinetic moment-hierarchy conservation equation for species a is

aN*P]

P R - L2 g ) -t

Uth|a

o (2.106)

where we define the fluid operator

;P ) V2p d*P Ny,

gﬁfz—ln(NaT”’sz B
Uth|a dt

dt la

L VPP=T) ;P2 ! ln(m)
2 M

InTy, -
dr eI B

(2.107)

since it is the key term that describes the evolution of the guiding-center fluid properties
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2.4. Drift-Kinetic Moment-Hierarchy

Na, Uja, P14, and Pj, (see Section 2.6). The guiding-center moments of the particle’s equations
of motion are given by

||RHZM = IZ];,(UOaapl(sjk + vth||ab7/l}cpj) Nk

(2.108)
. o
(U,mépléjk +Uth7/ P +UVB“'/%;7¢] +Uka7/lkp]) N,ék,
e h1pj PI| NIk *PJ
mall o[ = 2| Fiadpid syt + Fuaddf] | N mallst . 2.100

’

where the phase-mixing operators read

+
v = (\/’9 p+u+\/7pu)6k,, (2.110)

; \/(p+2)(p+1 vVpp-1)
%ipj 610 l (P + 2) p+2,l + T§p_2’l 5j,k» (2.111)
AP = @188k~ G+ D818 a1k — 610 -1k (2.112)

The expressions of U, Uyg,, U, and Uy, are derived from Upa, Usga U;éh, and U* by

PW
replacing Q, with Q.

The expression of ||.</|| *Pj In Eq. (2.109) is given by

11157 = e Y (Al + AnaV P+ A
ara Lk (2.113)
+Asa¥;) ’”ﬂ’” + Asq ] +A66,6p1<5,k)
with the phase-mixing term
VP = V3 +2)(p+ Dby +3/ (p+ 138 i1
(2.114)

+3/ P36, 11+ Vp(p-1D(p—-2)8,-3;

f_
7
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and the coefficients A;,

Ara=03,,,VL-V xDb, (2.115)
Aza= V24 [V (WY xb+V xvE) +V xb-Ag], (2.116)
Azq = Vipja(UaV xb+V xVg)-Ag+ 12,V xb-C, (2.117)
T\
Aga = Vinja Vi B-Vxb, (2.118)
myB
T qa
Asq=—=2V 1 B+ ()qV xb+V xvp), (2.119)
a
Asa:(vth”au”qub+vaE)-C (2.120)
with
b
Aa =bx E + (b-V)VE+ (vE-V)b+2u||avth||ak X b, (2.121)
bx [ov
c= —= + vg-V)vp+ ul k| xb. (2.122)
Vthlla ot

Similar moment-hierarchy models (with uniform magnetic fields) have been numerically
implemented, and successfully compared with their kinetic counterpart (Paskauskas & De
Ninno, 2009; Loureiro et al., 2016; Schekochihin et al., 2016; Groselj et al., 2017), and even
shown to be more efficient than other velocity discretization techniques in the same region
of validity (Camporeale et al., 2016). Equation (2.106) generalizes such models to spatially
varying fields and full Coulomb collisions, while retaining phase-mixing operators that couple
nearby Hermite and Laguerre moments and providing a close form for the projection of the
Coulomb operator in velocity space. We also note that the use of shifted velocity polynomials
in the Hermite-Laguerre basis, which gives rise to the fluid operator 95 J , allows us to have an
efficient representation of the distribution function both in the weak (¢, < v;;,,) and strong
flow ()4 ~ vsp4) regimes. As we will see in Section 2.6, the fluid operator 95 j generates the
lowest order fluid equations, as it is present even if all kinetic moments N i (except N29) are
set to zero.

2.5 Drift-Kinetic Poisson’s Equation

We use Poisson’s equation to evaluate the electric field appearing in the moment-hierarchy
equation, Eq. (2.106). In (x,v) coordinates, Poisson’s equation reads

eoV-E:anna :anffadsv. (2.123)
a a
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2.5. Drift-Kinetic Poisson’s Equation

Following the same steps used to derive Eq. (2.75) from Eq. (2.71), we can write Poisson’s
equation, Eq. (2.123), as

B*
egV-E= Z quf dBRdv” d,udHE”(S(R+ paa—xX)F,(R, v, u,0). (2.124)
a

Equation (2.124) shows that all particles that have a Larmor orbit crossing a given point x, give
a contribution to the charge density at this location.

Performing the integral over R and introducing the Fourier transform F,(x— pqa, v|, 4,0) =
[ d3kF,(k, vy, p, 0) e~ *kXeiPakd@ Eq. (2.124) can be rewritten as

Bf . .
eoV-E=Y qa f dv) dud3kd9m—"Fa (k, vy, i1, 0) e~ KX giPaka, (2.125)
a a

To perform the k integration, we use the cylindrical coordinate system (k, , @, k|), expressing
k = k) cosOe; + kb, such that k-a = k; cos0. This coordinate system allows us to express
eiPaka jp Eq. (2.125) in terms of Bessel functions using the Jacobi-Anger expansion (Andrews,
1992)

eik1Pacos? — jik o) +2 Y Jikipa)itcosl0) = Y itJy(kLpa)e’™, (2.126)
=1 I=—00

where J; (k1 pg4) is the Bessel function of the first kind of order /. We can then write

To[Fal+2 Y i'T[F,cos(16)]]. (2.127)

B*
eV-E= unfdvnd/,td@
a a =1

I
m

where the Fourier-Bessel operator I';[ f] is defined as
ulFatk, 0y, 1,001 = [ @Ik pa) Falk, vy, 1 6)e (2.128)

Introducing the Fourier decomposition of F,, Eq. (2.49), in Eq. (2.127), we obtain

*

B” (-1
€0V-E=anfdl/||d/.t—
a m

X g
Tol{F, +2
o[{Fa)R] ”,zzllﬂa

I'[Cra+C_al |, (2.129)

where the 6 integration was performed by using the identity f02” e0U=m g0 = 2151 — m).
Notice that f02” [olF,1d0/2m =Ty({Fs)Rr), and corresponds to the Jy(k; p,) operator used in
most gyrofluid closures (Hammett et al., 1992; Dorland & Hammett, 1993; Snyder & Hammett,
2001; Madsen, 2013a), and in the gyrokinetic Poisson equation (Lee, 1983; Dubin et al., 1983).

We now order the terms appearing in Eq. (2.129). Using the Taylor series expansion of a
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Bessel function J;(x) of order / (Abramowitz et al., 1965), we find

B (kJ_Pa)z

Tol(Fa)gl ~ |1 +O0@Eh) | (Fo)r, (2.130)

while using the orderings of v, and v; in Egs. (2.3) and (2.38)

I'1[Cral -

eve "N (EDR. (2.131)
Qq

for I = 1. Consistently with Section 2.3.3, we neglect the [ = 1 collisional terms, therefore
representing Poisson’s equation up to O(e,€). Such terms are included in the gyrokinetic
model in Chapter 3. Taylor expanding Jo(x) = 1 — x?/4, Poisson’s equation reads

1+ (2.132)

b-Vxb b-vaE)+ 1 Vi(Pla)

Ulg T
Q, JleTTq. 2ma T\ Q2

EOV-E:an[Na
a

2.6 Collisional Drift-Reduced Fluid Model

The infinite set of equations that describe the evolution of the moments of the distribution
function, Eq. (2.106), and Poisson’s equation, Eq. (2.132), constitute the drift-reduced model,
which is valid for distribution functions arbitrarily far from equilibrium. For practical pur-
poses, a closure scheme must be provided in order to reduce the model to a finite number
of equations. In this section, we derive a closure in the high collisionality regime. For this
purpose, we first state in Section 2.6.1 the evolution equations for the fluid moments (i.e.
N, U a Tja» TLa Qe and Q1 4), that correspond to the lowest-order indices of the moment-
hierarchy equation. Then, in Section 2.6.2, we apply a prescription for the higher-order parallel
and perpendicular moment equations that allows a collisional closure for Q| and Q4 in
terms of ng, )4, Tjq and T 4. The nonlinear closure prescription used here, sometimes called
semi-collisional closure (Zocco & Schekochihin, 2011), can be employed at arbitrary collision-
alities by including a sufficiently high number of moments [indeed, it was used in Zocco et al.
(2015); Loureiro et al. (2016) to consider low collisionality regimes]. It also allows us to retain
the non-linear collision contributions inherent to a full-F description that may have the same
size as its linear contributions, as pointed out in Catto & Simakov (2004).

2.6.1 Fluid Equations

We first look at the (p, j) = (0,0) case of Eq. (2.106). Noting that Cg% =0, we obtain

*00
aNa %00

o +V- R+ 2P =0. (2.133)

a
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2.6. Collisional Drift-Reduced Fluid Model

Evaluating ||R| |Z”f in Eq. (2.108) and "’ in Eq. (2.107), for (p, j) = (0,0), Eq. (2.133) yields the
continuity equation

dN,  doq [ NaV? NgV3
a_a+ﬂ( ¢ i‘P):_ 2V Ugg — — L(/)V.UO,Z. (2.134)

dt dt | QuB Q.B

The upper convective derivative d9/dt, defined by

dO
da_0 iy (2.135)
At~ ot

is related to the guiding-center fluid velocity ugy,

Tia+TiabxVB b dyzUp,
ll()a=U0a+ +—X—,
Mg Q.B Qg dt

(2.136)

and it differs from the lower-convective derivative dy,/dt in Eq. (2.102) by the addition of the
last two terms in Eq. (2.136). The vorticity Vi(p is related to the E x B drift by

b-Vxvg V2 ¢
Q,  BQ,

+0(e%), (2.137)

and it appears in Eq. (2.134) due to the difference between Na*00 and Ngo [see Eq. (2.104)].
To derive Eq. (2.134), we use the low-f limit expression for b x k = (b x VB)/B and neglect
Ujgb-Vxb/Qg,as

b-Vxb T
Ula X ~—é‘}ﬁ~63, (2.138)

therefore keeping up to O(e¢?) terms [namely the Vi(/) term in Eq. (2.137)]. We note that,
although the particle Lagrangian is kept up to O(e), the Euler-Lagrange equations set the
particle equations of motion and Botlzmann equation to be second order accurate in €.

The parallel momentum equation is obtained by setting (p, j) = (1,0) in Eq. (2.106), yielding

0 2
dalja _ MaVihla -~ 10 MaViP dotja  ma

m = V- (ulN,v
a dt \/E % ab QB dt \/zNa ( atVa fh”a)
v2 VB doab .
+ mall L1500+ [ 1+ == ( By~ Tia—= + mavp - —& ),
all ||a Q.B qal la B aVE dr
with
ULl V2bxVB Q.+ b( V2
llil = pa + £ Qlla QJ_a + Vthlla_ 1+ J'(P . (2.140)
\/E meg QaB Navthlla 2 QaB

The expression for C;% is given in Appendix B, as well as all the Cs l])‘ coefficients relevant for
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the present fluid model. The left-hand side of Eq. (2.139) describes the convection of u 4,
while the first term in the right-hand side is related to pressure and heat flux gradients, the
second term to resistivity (collisional effects), the third term consists of high-order terms
kept to ensure phase-space conservation properties, and the last term is the parallel fluid
acceleration, namely due to parallel electric fields, mirror force, and inertia.

The parallel and perpendicular temperature equations are obtained by setting (p, j) = (2,0)
and (0, 1) respectively in Eq. (2.106). This yields for the parallel temperature

N, doT ViB N.V2¢ do,T, N, T
NodaTia _ 0 ViB_NaVi¢ doaTia ,Na 19 41 Gy
V2 dt B 2Q,B dt Vth|a
E bxVB[ V¢
—V-(NyTjau2) + Ny Tja— - L (2.141)
alllala a ||ﬂB B QuB
2N, T, .
+ Y CONTo+ =2 10510,
b Vthlla
where
th 2
a U 2TjsbxVB b \%
lli”: Qll pa +\/_ la B X L2 Qlla " J_('b , (2.142)
2NaTja Veinja~ Ma QaB  2NgTja|  QaB
and for the perpendicular temperature
as (T NaV3 do, (T N,T N,T
Na_a( M) a L‘pﬂ( M):v.(_‘l i“ugi)__“ Loy o (2.143)
dr\ B Q.B dt\ B B B T
with
Qua Uy Ti.bxVB
T p— L. (2.144)

NaTi1q Vinja MmMa Q4B .

The equations for the evolution of the parallel Q, and perpendicular Q, , heat fluxes are
obtained by setting (p, j) = (3,0) and (1, 1) respectively in Eq. (2.106), yielding

2

dQja doa Vig
Zaxie T4 —L" |+ N, T, ,V3v c3
T ar Q””QaB alla thlla%: ab
QiaVi ¢
—QuV-ul— L LTy .Uy, —3V-
QlaV-ug QB 0a (UkaQja) (2.145)
3 Vi)p\E-bx VB
1+ | 2 P 0+ 3V2N, Ty 12| 220
\/z( QQB 32 Ql\a a ||a|| ||u

—3V2N, T2 - Vg —3V2Navpqul - Vg
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and
dy (QL“) _ _doa|Qla Vig) Naythlla(ul vy e
dt\ B dt | B Q.B V2 a B
NaTia, 21 QL o Vi¢
+ uB a(u(l V)u”a_( Ba v-ua+—QBV.UOa
(U 2U0vy3p) V(QLa) 2b C‘llz VinlaNaT 1 a (2140
—_ + . —
ka VB B \/z B
N,T? V\B bxVB %
+ atla Vl n QJ_aE. X 1+ L(P .
m, B2 B B2 Q,B

In Egs. (2.145) and (2.146) we neglected the higher-order moments with respect to N3° and
N1, an approximation that we will scrutinize in the next section. Equations (2.134)-(2.146)
constitute a closed set of six coupled non-linear partial differential equations for both the fluid
variables ng, U4, Tjja, TLa, and the kinetic variables Qj, and Q4.

With respect to previous 0F (Dorland & Hammett, 1993; Brizard, 1992) and full-F gyrofluid
models (Madsen, 2013a), our fluid model, Egs. (2.134-2.146), while neglecting k; p; ~ 1 effects,
includes the velocity contributions from the BIT denominator in the equations of motion,
Egs. (2.24) and (2.25), and includes the effects of full Coulomb collisions up to order eye.
Also, due to the choice of basis functions with shifted velocity arguments H),(s|,) instead
of Hy,(v|/v;na), we obtain a set of equations that can efficiently describe both weak flow
(U)a < Ving) and strong flow (u)4 ~ vsp,) regimes.

2.6.2 High Collisionality Regime

We now consider the high collisionality regime, where the characteristic fluctuation frequency,
w, of the fluid variables, satisfies

W ~ VipalVInNgl ~ vipalViInTal ~ vepal Vi In Toal ~ V) Uyal ~ Vena/ Lja, (2.147)
is much smaller than the collision frequency v, = v 44, that is

0w A
5,~ L Imipa g (2.148)
Va L||a

where the mean free path A, 7,4 in Eq. (2.148) is defined as
Amfpa = Vtha!Vaa- (2.149)

Equation (2.148) describes the so-called linear transport regime (Balescu, 1988). In this
case, the distribution function can be expanded around a Maxwell-Boltzmann equilibrium,
according to the Chapman-Enskog asymptotic closure scheme (Chapman, 1962) and, to first
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order in 6 4, we have

(F)r = Fma [1+ 64 fia®R v, b, 1)]. (2.150)

According to Eq. (2.150), all moments N,’;j in the Hermite-Laguerre expansion Eq. (2.50)
with (p, j) # (0,0) are order §,. Since Q. and Q,, are determined at first order in 6,
only by the moments (p, j) = (0,0), (3,0), (1, 1), the truncation of Sec. (2.6.1), i.e., neglecting
(p,j) #(0,0),(3,0),(1,1) is justified. For a more detailed discussion on this topic see Balescu
(1988). Moreover, in the linear regime, a relationship between the hydrodynamical and kinetic
variables can be obtained along the lines of the semi-collisional closure. This allows us to
express Q) and Q| 4 as a function of Ng, v 4, Tj4 and T 4, therefore reducing the number of
equations. We now derive this functional relationship.

We consider Egs. (2.145)-(2.146) in the linear regime, and neglect the polarization terms
that are proportional to Vi(/)/ (QgB). Thisyields v3/2) ", Cf‘z%/ Vinja = Rjgand X, C}l})/(\/ﬁv[h”a) =
R 4, with Rj, and R, , given by

B ViTja bxVB (Vuja VTq
Rja= +Uja ' * ’ (@150
Tja QaB \ uja  Tja
T .V|B 1 T bxVB (T, ,Vu T
Rig=-22212 gy mn=—22_y, (ﬂ la 4 vin 22|, (2.152)
Tya B 202 B Q.B Tia Uja B

since dg/dt ~dogldt ~ w and (dOQH,l/dt)/Q”,M ~ 521/,1. We compute the guiding-center
moments of the collision operator Cfl?) and C(IZ}J by truncating the series for the like-species
collision operator in Eq. (2.91) at (I, k,n,q) = (2,1,2,1). The resulting CZ i coefficients are
presented in Appendix B.

With the expression of C3) and C;, we can solve for Q, and Q_ 4. In the regime (T}, —
T14)/ T, ~ 6, atlowest order, we obtain for the electron species

D v T,
Qe _ _ 3 He =t ~ 10641 pe S, (2.153)
NeTeVtpe Uthe T,
and
W — w1 V)T,
ST el LY P KL (2.154)
NeTevipe Uthe T,

Analogous expressions are obtained for the ion species.

Equations (2.134), (2.139), (2.141), and (2.143), with Q), and Q,, given by Eqgs. (2.153)
and (2.154) are valid in the high collisionality regime, and can be compared with the drift-
reduced Braginskii equations in Zeiler ef al. (1997). We first rewrite the continuity equation,
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Eq. (2.134), in the form

ot

v (2.155)

Tje+ T ebxVB
Ne(vE+u||eb+ le Le )]:0,

Me Q.B

where we expand the convective derivative d%aldt using Eq. (2.135) and Eq. (2.136), and ne-
glect polarization terms proportional to the electron mass m.. By noting that the diamagnetic
drift v, can be written as

1 pPeb T. bx VB

Vje=——V X -2— R 2.156
©=eN,” " B “m., Q.B (2.156)
and by considering the isotropic regime T}, ~ T, ~ Te, we obtain
ON,
are + V- [N (VE + 1)eb +vg,)] =0, (2.157)

which corresponds to the continuity equation in the drift-reduced Braginskii model in Zeiler
et al. (1997). In that model, the polarization equation is obtained by subtracting both electron
and ion continuity equations, using Poisson’s equation n, = n; with n, and n; the electron
and ion particle densities respectively, and neglecting terms proportional to the electron to
ion mass ratio. Applying the same procedure to the present fluid model, we obtain

Vi ¢N;uy b VE o [NiTy; 1 0 _,(N:iTy;
0=V-|———|-V- V2 - v
Q;B 2m; Q3 2m; 0t Q3
N;.  dy;Uy;
+V'(_lbx 0i 0’)+v-[b(Niu||,-—Neu||e)] (2.158)
Q; dt
bx VB
+V. (N,-T”i+NeT||e+Nl-Tl,~+NeTLe)F )

In Eq. (2.158), the first three terms, which are not present in the drift-reduced Bragin-
skii model, correspond to the difference between ion guiding-center density N; and particle
density n;, proportional to both Vi(j) and ViPl—. The parallel momentum and temperature
equations, Eq. (2.139) and Eq. (2.141), with respect to (Zeiler et al., 1997), contain the higher-
order term ./ ~ O(e?) that ensures phase-space conservation, mirror force terms proportional
to (VB)/B, and polarization terms proportional to Vigb/ (Q,4B) due to the difference between
guiding-center and particle fluid quantities. This set of fluid equations constitute an improve-
ment over the drift-reduced Braginskii model. With respect to the original Braginskii equations
(Braginskii, 1965), they include the non-linear terms that arise when retaining full Coulomb
collisions, and the effect of ion-electron collisions.

2.7 Conclusion

In this chapter, a drift-kinetic model is developed, suitable to describe the plasma dynamics
in the SOL region of tokamak devices at arbitrary collisionality. Taking advantage of the
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separation between the turbulent and gyromotion scales, a gyroaveraged Lagrangian and its
corresponding equations of motion are obtained. This is the starting point to deduce a drift-
kinetic Boltzmann equation with full Coulomb collisions for the gyroaveraged distribution
function.

The gyroaveraged distribution function is then expanded into an Hermite-Laguerre basis,
and the coefficients of the expansion are related to the lowest-order gyrofluid moments. The
fluid moment expansion of the Coulomb operator described in Ji & Held (2009) is reviewed,
and its respective particle moments are written in terms of coefficients of the Hermite-Laguerre
expansion, relating both expansions. This allows us to express analytically the moments of the
collision operator in terms of guiding-center moments. A moment-hierarchy that describes
the evolution of the guiding-center moments is derived, together with a Poisson’s equation
accurate up to 2. These are then used to derive a fluid model in the high collisionality limit.

The drift-kinetic model derived herein will be considered in Chapter 3 as a starting point
for the development of a gyrokinetic Boltzmann equation suitable for the SOL region (e.g. Qin
et al. (2007); Hahm et al. (2009)). Indeed, using a similar approach, a gyrokinetic moment-
hierarchy may be derived, allowing for the use of perpendicular wave numbers satisfying
kips~1.
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3 A full-F Gyrokinetic Model for the
Tokamak Periphery

As described in Chapter 2, the plasma dynamics in the scrape-off layer region of fusion de-
vices is, in general, characterized by turbulent structures with length scales larger than the
ion Larmor radius. However, inside the separatrix, in the edge region, the plasma is hotter
and less collisional than in the scrape-off layer. Moreover, in the edge region, small-scale
ki ps ~ 1 fluctuations become important (Hahm et al., 2009). This is especially relevant in
the high-temperature tokamak H-mode regime (Zweben et al., 2007), the regime of opera-
tion relevant for ITER and future devices. Despite recent progress (Chang et al., 2017; Shi
etal., 2017), overcoming the limitation of the drift-reduced fluid models in modelling of the
tokamak periphery region by using a gyrokinetic model valid at k; p; ~ 1 has proven to be
exceptionally demanding, mainly because plasma quantities such as density and temperature,
and associated plasma collisionality, can span a wide range of values and the relative level
of fluctuations in this region can be of order unity (Scott, 2002). In order to overcome the
numerical complexity associated with the modelling of small-scale fluctuations at the tokamak
periphery, in this chapter, we extend the drift-kinetic moment-hierarchy derived in Chapter 2
to the gyrokinetic regime.

By taking advantage of the low-frequency character of plasma turbulence in magnetized
plasma systems, gyrokinetic theory effectively removes the fast time scale associated with the
cyclotron motion and reduces the dimensionality of the kinetic equation from six phase-space
variables, (x,v), to five. While linear and nonlinear gyrokinetic equations of motion were
originally derived using asymptotic techniques (Taylor & Hastie, 1968; Rutherford & Frieman,
1968; Catto, 1978), more recent derivations of the gyrokinetic equation based on Hamiltonian
Lie perturbation theory (Cary, 1981) ensure the existence of phase-space volume and magnetic
moment conservation laws (Hahm, 1988; Brizard & Hahm, 2007; Hahm et al., 2009; Frei et al.,
2019), and are the ones followed in this chapter for the derivation of the gyrokinetic model.

As both large scale and amplitude fluctuations (particularly in the H-mode pedestal), and
small scale and amplitude fluctuations k, ps ~ 1 are at play in the tokamak periphery, we split
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the electrostatic potential ¢p = ¢pg + ¢p; into its large-scale component ¢y satisfying

edo
T,

1, (3.1)
and its small-scale ¢p; component

b1
- ~es < 1. (3.2)
®bo 0

Both ¢ and ¢, are set to yield a similar contribution to the total electric field
E~Vi¢o~Vi¢p. (3.3)

We order typical gradient lengths of ¢p; to be comparable to ps, that is

Vi
~1, (3.4)
Ps o
which, using Eqgs. (3.2) and (3.3), constraints typical gradient lengths of ¢pg to be much larger
than pg, as
\Y%
05 o) €5. (3.5)
$o

In the following, we set €5 ~ €. We note that the use of the sound Larmor radius p; instead of
the ion Larmor radius p; in Egs. (3.4) and (3.5) allows us to describe the dynamics of both cold
ion and hot ion plasmas. Finally, similarly to Eq. (2.3), the collision frequency is ordered as

Ve e, < (3.6)
— ~€ €, .
Q;

with v, = v,; the electron-ion collision frequency.

The Hamiltonian approach we use to derive the gyrokinetic equation is usually carried out
in two steps. In the first step, small-scale electrostatic fluctuations with perpendicular wave-
lengths comparable to the particle Larmor radius are neglected (Cary & Brizard, 2009). Within
this approximation, the coordinate transformation from particle phase-space coordinates
(x,v) to guiding-center coordinates Z = (R, v, 1, 0) is derived, where R is the guiding-center,
v) the parallel velocity, u the adiabatic invariant, and 0 the gyroangle. To first order, and in
the electrostatic limit, this procedure yields the Lagrangian derived in Chapter 2, Eq. (2.19).
The second step introduces small-scale and small-amplitude electrostatic fluctuations ¢;.
A gyrocenter coordinate system Z = (R, 7, [, 0) is then constructed perturbatively from the
guiding-center coordinates Z via a transformation 7T of the form

Z=TZ=Z+¢esZ; +..., (3.7)

such thatu= Ty = p+esuy + ... remains an adiabatic invariant. This allows us to reduce the
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3.1. Derivation of the Gyrokinetic Equation

number of phase-space variables in the kinetic Boltzmann equation describing the evolution
of the particle distribution function from six to five, simplifying the analytical and numerical
treatment of magnetized plasma systems.

Similarly to Chapter 2, we consider a plasma composed of both electrons and ions, with
distribution functions arbitrarily far from thermal equilibrium with electrostatic fluctuations
only, i.e., ;A = 0. In order to allow both e¢/ T, ~ 1 fluctuations with k; ps « 1 and e¢p/ T, < 1
fluctuations with k; ps ~ 1, we order

VExB ep ki
€~ ~k ps— ~—<1. 3.8
Ce 1Ps T, kL (3.8)

We focus on the collisionless part of the plasma dynamics, while the development of a gyroki-
netic collision operator is performed in Chapter 4. The derivation of the gyrokinetic model is
presented in Section 3.1. In Section 3.2, a moment-hierarchy formulation of the gyrokinetic
equation is derived, by expanding the distribution function in Hermite-Laguerre polynomials.
In Section 3.3, the system of equations is closed by deriving the gyrokinetic Maxwell’s equa-
tions in terms of coefficients of the Hermite-Laguerre expansion of the distribution function.
The conclusions follow.

3.1 Derivation of the Gyrokinetic Equation

We start from the guiding-center Lagrangian Ly, of a charged particle moving under the effect
of an electromagnetic field derived in Chapter 2, Eq. (2.19), and write the guiding-center
Lagrangian one-form yg, = Lo,d ¢ as

mg mg vﬁ
Yoa = GaA" - dR + p 0~ Gay + —5 | dt = Aog- dZ~ Hoad, 3.9)

a

where we defined the vector Ay, as Agg = (qug ,0,0, u%) and the Hamiltonian Hy, = qa¢pg +
mg vﬁ/ 2, with ¢; and Ay the quantities defined in Egs. (2.20) and (2.21), respectively. The
drift-kinetic equation of motion derived using the Euler-Lagrange equations in Chapter 2, can
also be derived by setting to zero the variation of the action Ay, = [ Yoq4-

In order to include perturbations at the Larmor radius scale, the electrostatic field ¢, (x),
neglected in the derivation of Eq. (2.19), is now added to Eq. (3.9), i.e., we add the term —g¢;
present in the particle Lagrangian in Eq. (2.7). Therefore, the resulting Lagrangian one-form
including guiding-center dynamics and gyrokinetic perturbations is given by

Ya=Noa-Z— Hoadt — qprdt = Ay -dZ— Hudr. (3.10)

We note that due to the presence of ¢; (x) = ¢p; (R + p) in the Hamiltonian H,, the Lagrangian
in Eq. (3.10) is no longer gyroangle independent. In order to reduce the Lagrangian vy, from a
six dimensional phase-space dependence Z to a five dimensional dependence, we perform a
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coordinate transformation to a new coordinate system Z = (R, i, 7, 0) in such a way that the
gyrophase dependence of y, in 6 is removed. Under a change of coordinates Z = TZ, given
perturbatively by Eq. (3.7), the Lagrangian v, is given by

0Z —
yFZAa-a?dzi—Hadt. (3.11)
i i

Therefore, by defining the vector

0Z
e—at 3.12)
0

Z;

Ai=A-

the Lagrangian 7, in the new coordinate system can be written as
Yo=MNg-dZ-Hgdt. (3.13)

Equation (3.12) shows that the vector A, and, in general, the Lagrangian one-form vy, trans-
form as covariant vectors under a change of coordinates. As the coordinate transformation T
is dependent on the phase-space coordinates Z, the change of basis in Eq. (3.12) is, in general,
difficult to evaluate for an arbitrary coordinate transformation. However, as noted by Deprit
(1969), leveraging the fact that T is a near-identity transformation [see Eq. (3.7)], the A, vector
can be expanded as Aa=Y n €"A,p, and a recursion relation for the A gy, components can
be found. This near-identity transformations, in the context of perturbation theory, were
formulated as Lie transforms by Deprit and are introduced in the next section.

3.1.1 Lie Transform Perturbation Theory

We present the formalism we use to perform the coordinate transformation from Z to Z, i.e. a
perturbation approach known as Lie transform perturbation theory (Deprit, 1969; Cary, 1981;
Littlejohn, 1981; Brizard & Mishchenko, 2009). This formalism allows us to convert a one
form y =y, dz" with a symplectic part A and Hamiltonian part H such that y, = (A,—H) and
zV = (z, 1), to anew one-form I = I',d Z" with new set of coordinates Z". We remark that Y
and I' are two arbitrary one-forms that are linked by a coordinate transformation, and that v
runs from 1 to 6+1, since it includes the time component ¢ of the transformation, whereas the
index i runs from 1 to 6. We look for a near-identical coordinate transformation around the
small parameter €5 ~ € <« 1, namely

X ¢ 0"¢Y (2",0)

v _ KV v —
VARS ()b+ (Z ’€) - = nl aen

, (3.14)
where ¢ = (z",¢€) is the mapping function that specifies the coordinate transformation, such
that ¢ (z#,0) = 2". In Eq. (3.14), for a given ¢, the function ¢ transforms the coordinates
z" to the new coordinates Z". Indeed, the coordinates Z" are the values of the function ¢
evaluated at (z",€). Symmetrically, we can define the inverse transformation of Eq. (3.14) by
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3.1. Derivation of the Gyrokinetic Equation

introducing the mapping function ¢ (Z",¢) as
2V =¢¥(Z%,e) =Y (¢} (2%,€) €). (3.15)

The Lie transform is a special case of Eq. (3.14), where the function ¢} is specified by introduc-
ing a generating function, g¥, such that ¢ is solution of

0

a—+(zv,€) =g" (¢4 (=",€). (3.16)
€

We remark that Eq. (3.16) is a functional relation since both sides are evaluated at (z",¢€) and,

therefore, the arguments are dummy variables. An equation for ¢»V can be obtained by taking

the derivative with respect to € on both sides of Eq. (3.15) and using Eq. (3.16), yielding

opY _do¥ o agpY 100

- =& g

Nl
oe de Oe 04)’1 (3.17)

where we used the fact that dz"/de = 0.

We now deduce the transformation rule of scalar functions induced by a Lie transform
specified by Eq. (3.16). Let f be a scalar function of the coordinates z” and F a scalar function
of the new coordinates Z"¥ which satisfy f(z") = F(Z¥) with Z"¥ = ¢ (z",¢), e.g., the guiding-
center distribution function in Eq. (2.39). Since the coordinate transformation in Eq. (3.14)
depends explicitly on €, the function F will also have an explicit e-dependence. Thus, we write

F(Z",e) = f(z"). (3.18)

Taking the derivative with respect to € of Eq. (3.18), while noticing that d f/de = 0, and using
Eq. (3.16), we obtain
OF

P -8'0,F=—-%4F. (3.19)

In Eq. (3.19), we defined the Lie derivative £ of a scalar function as
Le=g"0y. (3.20)

The differential operator d, acting on F is defined by

0F(Z")
0zZv
0,F = (3.21)
0F(z")
0zV

’

Expanding F(Z",¢) around ¢, using Eq. (3.19) to compute the € derivatives of F, and the fact
that F ((/)Yr z¥,0), 0) = F(z",0) = f(2"), the functional relation between F and f can be found,
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yielding
F=e%f, 3.22)

From Eq. (3.22), the functions F and f coincide at € = 0. The inverse relation follows directly
from Eq. (3.17) by

f=e“sE (3.23)

We emphasize that Egs. (3.22) and (3.23) are relations between functions, in the sense that
their arguments are dummy variables and, therefore, can be evaluated at both z¥ and Z" [in
the sense of Eq. (3.21)]. We refer to Eq. (3.22) as push-forward transformation, and to Eq. (3.23)
as pull-back transformation (Brizard & Mishchenko, 2009).

Equations (3.22) and (3.23) allow us to derive the functional form of the coordinate trans-
formation in Eq. (3.14) as specified by Eq. (3.16). With the particular choice of scalar functions
F=¢Y and f = IV [I" is the coordinate function, such that IV(z") = 2¥ = ¢¥(Z",¢€))], and
evaluating the push-forward transformation in Eq. (3.22) at Z", yields

' =e %z, (3.24)

The inverse coordinate transformation of Eq. (3.24) follows directly from the pull-back trans-
formation in Eq. (3.23) with, in particular, f = ¢} and F = I" evaluated at 2", that is

ZV =%z, (3.25)

We now derive the transformation rule of a one-form [e.g., ¥ in Eq. (3.10)] under the
transformation in Eq. (3.14). From the invariance I'ydZ" = y,dz", the components of T’
transform as components of a covariant vector,

gt
FYAG

Iy (Z",e)=—=(Z",e)ya(¢Y.(Z",6)), (3.26)

with Z¥ = ¢ (z¥,€). Evaluating the derivative with respect to € on both sides of Eq. (3.26),
using Eq. (3.17), and finally expanding I', (Z",€) around €, we find the following functional
relation

T, =e %y, +0,S, (3.27)

with S a gauge function and £, the Lie-derivative acting on a one-form I'. The v component
of the Lie-derivative acting on a one-form is given by

(LeV)v=8g" (027v—0vy2). (3.28)

The gauge function S reflects the invariance of the action A= [T under the addition of a total
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derivative. We remark that the Lie derivative in Eq. (3.28) does not correspond to the one in
Eg. (3.20), as they act on different mathematical objects. Equations (3.22) and (3.27) define the
transformations of scalar functions and one-forms induced by the Lie transform associated
with the generating function g".

In a perturbative approach, a change of coordinates is performed at a particular order in
€, with the goal of averaging out the high-frequency components in the particle dynamics at
each nth-order in the expansion. Therefore, we define £, = £, as a shorthand notation to
the Lie-derivative associated with the generating function g, and introduce the successive
change of coordinates,

o0
7' =T.z" =[] & “r2". (3.29)

n=1

Thus, we obtain the second-order accurate coordinate transformation evaluated at z" by

. 2
expanding T, = el1+€ Lo+~

“in € and, using Eq. (3.20), yielding
1
7" =z"+eg)(z") +¢€ 5 gl (210,87 (2") + &) (2") | + O(eD). (3.30)

Applying the same procedure for the one-form I' = }_,,T';, the recursion relations for the
component ', obtained from the one-form y =), y,, are given by

To=70+dSo, (3.31a)

I'i=y1-%1y0+dS, (3.31b)
1

Ta=y— Ly + 5312—22 Yo+dSz, (3.310)

1 1
I's= Y3 —$1Y2 —23}’0 —221“1 + 5312 (Yl + Efl + d53, 3.31d)

In Eq. (3.31), the Lie-derivatives act on one-forms and are, therefore, defined by the relation in
Eq. (3.28).

In the following, we use Lie transform perturbation theory and solve the hierarchy in
Eqg. (3.31) to obtain the gyrocenter one-form F(E,?”,ﬁ) from the guiding-center one-form
Y in Eq. (3.10) up to second order in €. We note that the inherent degrees of freedom in
choosing the generating functions g,, allow for different expressions of I' found in the literature,
depending on the imposed constraints on the one-form and on the lowest order guiding-center
Lagrangian (see, e.g., Brizard & Hahm, 2007; Hahm et al., 2009; Dimits, 2012; Tronko et al.,
2016).
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3.1.2 Gyrocenter Transformation

We now construct the gyrocenter coordinates Z=R7,4, 0) in order to obtain a gyrophase
independent Lagrangian one-formI'=T; dZ' -Hdrand, asa consequence, retain the dynami-
cal conservation of . While the use of Lie-transforms to derive a gyrocenter coordinate system
from a drift-kinetic Lagrangian is standard in gyrokinetic literature, here, for the first time, we
apply Lie-transforms to the Lagrangian derived in Chapter 2. The gyrocenter one-form I is
derived by using Lie transform perturbation theory up to second-order in the small parameter
€. However, we show that only a O(e) coordinate transformation in Eq. (3.30) is sufficient
to obtain a second order accurate equation for the evolution of the gyrocenter distribution
function. The kinetic equation we obtain allows us to describe the plasma dynamics in the
tokamak periphery in the presence of electrostatic fluctuations at the particle Larmor radius
scale, and retain k p; effects at arbitrary order.

Following Eq. (3.10), we write the perturbed guiding-center one-form y as y = y¢ +€y; in
the guiding-center coordinate system Z, with

Yo =Aoa-dZ— Hy,dt, (3.32)
and

Y1=—qdrdr. (3.33)

We take advantage of the degrees of freedom in the choice of the gyrocenter generating
functions, denoted by g} and g3, to impose that only H gets modified in the coordinate
transformation, while the symplectic part A retains its form. The resulting Lagrangian is then
evaluated at Z. This is usually referred to as the Hamiltonian formulation of gyrokinetics
since it includes gyrokinetic fluctuations in the Hamiltonian component of the one-form only
(Brizard & Hahm, 2007; Miyato & Scott, 2011). Therefore, we impose that for A= >u €"A,, the
components A, vanish for n > 1. Additionally, by requiring that I is gyrophase independent,
we impose dg H = 0. These two rules are referred to as gyrocenter transformation rules. The
Hamiltonian formulation is advantageous since the guiding-center Jacobian, B|’|“ /' m, is not
perturbed by the small-scale fluctuations, such that it preserves its functional form, i.e.

B*(R) B*(R)

| dRdvdpdo = —— dRdv,drudo. (3.34)
mg m&l

We solve now the hierarchy in Eq. (3.31) up to second-order in €5. From the zeroth-
order transformation, Eq. (3.31a), we find I'y =y with Sp = 0 and retrieve the guiding-center
dynamics at lowest-order in €. The first order gyrocenter correction I';, given by Eq. (3.31b), is
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obtained by computing the Lie-derivative of y( according to Eq. (3.28). This yields
08
I = (qagf? xB* — magﬂ b+ VSl) -dR+ (magf -b+ 6_1;1) dv
I

651 mg y) (ma 0 681)
+2 -t e+ | g0+ —La 3.35
( 0 g ! 0 8 o ) (3:35)

*

p I R Mag o 0A7)
Bg1 +mqv| 8, + 8 qaV$o + uVB+ 2 Vug + a7 qathr +

5,

dt.
ot

+

The high-frequency components in the fluctuations can be isolated by using the gyroaverage
operator in Eq. (2.15), such that

1 ={p1) g+ P1. (3.36)

Imposing the gyrocenter transformation rules to Eq. (3.35) yields

s,=4 f ’ do'p;. (3.37)
QJo

The first order gyrocenter generating functions are given by

1
R
=- bxVS;,
81 aB|T X VOl
I B*-V$;
1~ *
B
m“a I (3.38)
qa 051
g= 000,
m, 00
qa 051
g = 0%
mg O
The first order gyrocenter correction I'; in Eq. (3.35) can then be written as
I =-q{p)dr=—Hdt. (3.39)

We remark that the first order gyrocenter correction I'; in Eq. (3.39) corresponds to the one
found in Brizard & Hahm (2007); Hahm et al. (2009). Using Eq. (3.30) and Eq. (3.38), the
gyrocenter coordinates Z= (E,?” TS 9) accurate up to O(e) are given by

E=R+gf?,
- I
vy =v+ 8,
S ‘g:} (3.40)
pu=pu+g,
5:6+g?.

In a similar manner, the system of equations in Eq. (3.31) can be used to derive a second order
Lagrangian I'; that obeys the gyrocenter transformation rules. The resulting second order
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gauge function S is given by

@+ b '[V(felde”@)xwﬁ]

2 0
Sy=—da_ " 490
o qala

" 2BQ,

) (3.41)

which allows us to derive the corresponding second-order gyrocenter generating functions g,

gk 1 b x VS (3.42)
2 =T %% 2 .
qd BH
| B*-VS,
8= o (3.43)
|
0S
gf = %a—;, (3.44)
a
oS
gg = —%a—:, (3.45)
a

and the second order perturbed Lagrangian

—2
0 {1 )+ b ‘

I, - 9,
ou Gafa

= dt=—H,dt. (3.46)
2maQq,

0
(V U d@’&ﬂ) x Vepr)

Therefore, the gyrocenter one-form T', accurate up to O(e?), is given by

_ _  _ OB - _—
I (R,7),7) = qoA" - dR + l;z_de ~Hat, (3.47)
a

with the gyrokinetic Hamiltonian H = Hy+ H; + H,. Here, the overline notations Hy and A*
indicate that the guiding-center quantities are now evaluated at (E, 7| ,ﬁ), i.e. Hy= Ho(R, 7, 10)
in Eq. (3.9) and A* = A*(R, 7, i). The gyrokinetic potential ¢ (x) in H; and H, must be
evaluated at the particle position x expressed in the gyrocenter phase-space. Using Egs. (2.12)
and (3.40), the particle position x can be written as

x=R+p+0(?), (3.48)

with p(Z) = p(Z) — gR(Z). As shown in Brizard (1989); Sugama (2000), the generator gF present
in the p term in Eq. (3.48) induces third order contributions to the one-form y,. Therefore,
when evaluating the potential ¢; (x), only its lowest order contribution ¢, (x) = ¢, [R + p(Z)] is
considered.

The gyrokinetic Hamiltonian H; and H, represent the effects on the particle dynamics of
small-scale fluctuations of the electric field. In particular, we identify the O(e) term as the first
order gyrokinetic potential ¢;. The 0O(e?) modification, however, is a nonlinear contribution
that represents nonlinear ponderomotive effects driven by ¢;. In fact, in the long wavelength
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limit, with¢p = (1+p -V + pp:VV) (), we find that

1
Hy ~ —Emav%. (3.49)

For a more detailed discussion on the physics of the Hamiltonian present in Eq. (3.49) see
Krommes (2013).

By applying the Euler-Lagrange equations to the Lagrangian in Eq. (3.47) or, equivalently,
by varying the action A = [T, second-order nonlinear gyrokinetic equations of motion are
obtained

ot’

q.B” XE-!— mub?|| =-V

B Mg_p Mg o _—
alPo+ (Pp1)g) + Hy+ ==V + == Vg + 1B| ~ qa (3.50)

2

withvy=b 'ﬁ, and ﬁ = 0. In Eq. (3.50), we have defined the gyroaveraging operator {y)z as
1 2 _
= 0)do, 3.51
Y% 27 Jo X () (3.51)

which is performed at fixed position R. The Rand ?” equations of motion can be obtained by
taking the vector and scalar product of Eq. (3.50) with b and B*, respectively. This yields

R=TU~+ B b x @+£§B +£x€(<¢ >+E) (3.52)
"B, \dt mg By YR L) '
MaV) = qaE| =1V B+ maVg - — =Ml — a—z -V [{Pp1)g+— |, (3.53)

dt B, qa
2
7 9a 0 ( HZJ
0=Q4+—— zgt—| 3.54
ot mga O ‘b Ga (559

where the convective derivative d/dr is defined as d/dt = 3, + U - V with the lowest order
particle velocity U= vg + v b. Similarly to the drift-kinetic case, Equation (3.52) describes
the motion of a single gyrocenter in the tokamak periphery. Besides U, the particle velocity
includes the polarization drift of the background electric field, i.e. 1/Q,b x d;U, the magnetic
gradient drifts, such as, e.g., 1i/Q.b x VB, and the gyrokinetic E x B drift, .i.e., b x V(H; +
H>)/(g4B) due to small-scale fluctuations. Equation (3.53) is the parallel momentum equation
that, besides the drift-kinetic contributions similar to Eq. (2.25), includes an additional parallel
force due to the parallel gradients of the gyrokinetic Hamiltonian H; + H». Finally, Eq. (3.54)
represents the evolution in time of the gyrocenter gyrophase 6 of the particle, which is different
from the physical gyroangle 6 due to small-scale perturbations in the particle gyromotion.

With respect to Chapter 2, the equations of motion in Egs. (3.52) and (3.53) take into
account second order accurate gyrokinetic fluctuations that can be used to describe the
evolution of the plasma distribution function due to both large-scale ¢y and small-scale ¢,
time dependent fluctuations. We remark that second order gyrokinetic effects are needed

53



Chapter 3. A full-F Gyrokinetic Model for the Tokamak Periphery

in order to obtain an energy conservation law when applying Noether’s theorem (Brizard &
Hahm, 2007). While in the present thesis, an electrostatic model first order accurate in the
guiding-center dynamics and second order for the gyrokinetic fluctuations is considered, in
Frei et al. (2019), we improve Eqgs. (3.52) and (3.53) by using a Lie-transform perturbation
methods to describe both guiding-center and gyrocenter dynamics up to second order in €
and to include electromagnetic fluctuations, which constitute an important improvement
over previous gyrokinetic models for the edge region (Hahm et al., 2009; Dimits, 2012; Madsen,
2013a).

3.1.3 The Gyrokinetic Equation

The gyrokinetic equation dictates the evolution of the gyrocenter distribution function F,
which is related to the guiding-center distribution function F and to the particle distribution
function f(x,v) via

F(Z)=F@Z) = f(x,v). (3.55)

Similarly to Eq. (2.40) we use the chain rule to rewrite the Boltzmann equation, Eq. (2.31), in
gyrocenter coordinates Z, yielding

0F, - — _. 0F, =0F, —
—+R-VF,+ V= +0—= C(Fu), (3.56)
ot v 90

where we used the fact that 1 = 0. We simplify Eq. (3.56) by applying the gyroaveraging
operator at constant R. This results in the gyrokinetic equation
0(Fu)
ot

- — - 0 (F_a>f —_—
+R-V(F)z+7) 5 (C(F)g- (3.57)
In order to derive a moment-hierarchy model from the gyrokinetic equation, we write Eq. (3.57)
in a conservative form. We note that the gyrocenter phase-space volume element, B|’|k Img,
is conserved along the gyrocenter trajectories in phase-space (Brizard & Hahm, 2007) and,
therefore, satisfies Liouville’s theorem,

0By . 9
I Y.l pr* B -
4V (RB;) + 5 (7157) =o. (3.58)

Using the conservation law for Bl’l" in Eq. (3.58), from Eq. (3.57), we obtain

0(B; (Fa)g)
or

o (@B} g

+V- (BB} Fog) + a5, B (C(Fa)g: (3.59)
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3.2 Gyrokinetic Moment-Hierarchy

We now simplify the solution of Eq. (3.59) by expanding the gyrocenter distribution function
in a Hermite-Laguerre polynomial basis, therefore extending the moment-hierarchy equation
derived in Chapter 2 to the gyrokinetic regime. We expand <F_a)§ as

0o PJ

__ N _
Fog= Y. —2=FmaHpGa)L;5:,), (3.60)

p,j=0 \/pr!

where all the quantities in Eq. (3.60) are evaluated at the gyrocenter coordinates Z, and the

gyrokinetic Maxwellian F;,, is given by

Ng

M

—— ¢ fla7 e, (3.61)
3/23; -2

T VihllaVih1a

?Ma =
with v%h”a = Zﬂalma, ?fhm =2T 4l Mg, Sja= @)~ U/ Vin)q and Eiu ZﬁB/Tla. The evo-

lution for the coefficients NZJ are obtained by projecting the gyrokinetic equation, Eq. (3.59),

— 1k
in a Hermite-Laguerre basis using the projector || x|, , defined as
T B - )
Il " =~ | dvidEdo—=x (Fa) HyG1a)L; G2 ). (3.62)
Ny, Mg

Similarly to Eq. (2.104), a relation between the moments N;pl = m;p] and the gyrocenter
moments NZ] can be obtained using the definition of Bl’l“ in Eq. (2.23), yielding

Ik vthllab'ﬁ x b
+

I+1k -1k
p o (VI+ING 4 VIN ). (3.63)

——=xlk
We now apply the projector ||y, to the gyrokinetic equation, Eq. (3.59). By introducing
the convective fluid derivative

Vv, (3.64)

arlk 5 =ik
=517, -

the gyrokinetic moment equation hierarchy equation describing the evolution of the moments

NF is given by
1k
ON," _ =tk V2l ——xI-1k
i VR| -], +Fk=clk (3.65)
ot a  Uthla “

with Cflk the Hermite-Laguerre moments of the Coulomb collision operator (subject of Chap-
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ter 4) and & ¥ the fluid operator

d*lk 12—k f /p(p_l) d;l—Zk

lk - -
Fi==In n(NoTq T1aB ™)+ Ty,
d*lk—l T d*l lk
e [Taa) V2 Tja- (3.66)
dt B Vthlla dt
Trxlk —xlk

and “jll |, ,we first rewrite the gyrokinetic

equations of motion present in the gyrokinetic equation as

—~2
b qf; 0{¢ )ﬁ
R=R|, z+B” XV(<<!>1>R om0 ) (3.67)
and
B* q 6((7;2)
2y
ERTIP dags- (<¢>1>R 7 “Q o0 R), (3.68)
By a

where R| 77 and v | z—7 are the guiding-center equations of motion Egs. (2.99) and (2.100)
evaluated at Z. We note that, in the second order Hamiltonian H> in Eq. (3.46), we have

neglected the term b - (V (fe dQ’(’ﬂ) x V1) 1(qaQ4) as it can be shown to be always smaller
—=xlk

than d, @IZ) by a factor of p,|VB/B| (Hahm et al., 2009). Therefore, the moments ’ R . and
|71]], canbe expressed as

=k b |[B- " @ b | B o= i

'], =i, Pkl oy M P >R . (3.69)
and

= Ik B* " gk [B* 0= e

il = ol — B Vg a o e V(1 >R . (3.70)

with ||R|| Zlk and || Uy || Zlk given by Egs. (2.108) and (2.109), respectively, with Z = Z and Nflk =

N

a -

We now derive an expression for the second and third terms appearing on the right-hand
side of Egs. (3.69) and (3.70) as functions of moments Nflk of the distribution function. As a first
step, we derive an analytical formula for the Hermite-Laguerre moments of the gyroaveraged
electrostatic potential (¢;)z and o z)ﬁ. Considering that, at leading order, x = R + p , with
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3.2. Gyrokinetic Moment-Hierarchy

P.=Pa (E), we write ¢p; by using its Fourier harmonics, that is

$1(x) = f b1 (k) e Re*Pa k. (3.71)

By taking advantage of the Jacobi-Anger expansion of Eq. (2.126), ¢; (x) can be written as

pr= Y ile” f $100e™ R, (k1 7 ) dK, (3.72)

I=—00

and, integrating Eq. (3.72) over 6, the gyroaveraged electrostatic potential ¢); becomes

(P17 = f $100e™ R ] (k1 5 ) dk. (3.73)

The pand k; dependence in the Bessel function Jy(k p,) can be further decomposed by

introducing the parameter p;,, = Vs, /4 and noting that p , = \/ﬁB/Tlap tha = SLaPtha
which allows the use of the following identity between Bessel and Legendre functions (Grad-

shteyn & Ryzhik, 2007)

Jm(2ba51a) = bIST el i mbﬂ (3.74)
m avla) =Yg 914 & (m+r)! a .

with b, = k] ptna!/2. The zeroth order Bessel function can therefore be written in terms of
Laguerre polynomials as

o0

Jo@ba51a) = Y. Ky (ba) L (55 ). (3.75)
r=0

with the Kernel function
b2r
K, (by) = —“'e‘bi. (3.76)
r!

We can then develop the velocity dependence of (¢1) explicitly in terms of Laguerre polyno-
mials as

Gr=Y L) f $100 ™K, (b, dk. 3.77)
1

Ik
We now apply the projection operator to (¢1), therefore evaluating || (¢1)z|, - We note

S
that the evaluation of ||(¢1)z|, requires the calculation of an integral of the product of

three Laguerre polynomials. This is due to the fact that the projection operator m;p in
Eq. (3.62) contains a Laguerre polynomial factor, one Laguerre polynomial comes from the
Hermite-Laguerre expansion of the distribution function, and the third Laguerre polynomial
is present due to the fact that the gyroaveraged electrostatic potential (p1)g in Eq. 3.77) is
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also composed of linear combination of Laguerre polynomials. We then express the product
of two Laguerre polynomials in terms of a single polynomial, therefore writing the product
Ly(x)L,(x) as

|k+n|

LiL,= Y a*"L,, (3.78)

s=|k—n|

where the expansion coefficients a*” are determined by the Laguerre polynomial orthogonal-
ity relation Eq. (2.70)

akn = f dxe *Li(x)L,(x)Ls(x). (3.79)
0

A closed formula of the coefficients a*" is given by (Gillis & Weiss, 1960)

22m—k—n+s k+n— |
alscn — (_1)k+n—sz ( n—m)

—~ (k-m)!(n-m)!Cm—-k-n+9)(k+n-s—-m)!’ (3-80)

where the summation is over all possible values of m such that the factorials are definite-
positive. By applying the Hermite-Laguerre operator to Eq. (3.77), we obtain in Fourier har-

monics
1 kS ikn
w @zl = X Zar babr (o, (3.81)

where we introduce the FLR operator

. |j+kl ]
P by= Y al*N" K, (by). (3.82)
r=lj—ki

We can now derive an expression for the moments of the guiding-center velocity in
Eq. (3.69). Applying the projector operator, Eq. (3.62), to the gradient of (P1)g we obtain, in
Fourier harmonics

*lk
B _
B—lTV (P1g

Lb X
Nq

=bx Y DI ba,J¢1 (), (3.83)
n=0

a

where we introduce the FLR gradient operator

. . [p+kl ) . _ B
DY (bl = k2l + Y Y (5{,—5; 1)ja§’k1va1n(_—)1<n
p s=|p-kl TJ_a
; _ Tia|(b?
+5{,a§”“fov1n - ¢ (?“)(Kn_l—Kn) ) (3.84)
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The second order contribution (gE Z)E in Eq. (3.69) is rewritten using ¢ = (¢1) 5+ cﬁ , yielding

—2
(D1 )R = DD~ (D)% (3.85)
Furthermore, we convert the derivatives in i in Eq. (3.69) to derivatives with respect to Ei 2 by
using
0 <¢1>R TJ_a a«/)?)E
— V() = V-V|ln — X (3.86)
0 (/)1 R T la s la B a,u

We project both terms in Eq. (3.86) into a Hermite-Laguerre basis. For the first term, we use
the identity

842 Ik
ou

1
Ng

— oo n—1
__5 f AKK KT Y 5 D b+ )1 109 0), (3.87)
n=1j=0

TJ_a

for the projection of <¢%>§ and

a2 |
L <¢)_1>R ___B /dkdk/ l(k+k)R Z ‘ni/ll
Na a‘U TJ_a nn’ 0r= |}’l n|
r#0
,r—l r
xaf™ 3 Dt (ba, )10 ¢ (K), (3.88)
s=0

for ((/)1) with the D an n, (ba, 174 ) operator given by

|j+kl i
;’;’n,(ba,b’)— Zka Kn(ba)Knr(b’)N” (3.89)
t=|j—kl

Finally, for the second term in Eq. (3.86), we use the identities

1 6<¢% r ik+k)R caionly lk] ’ / ’
— V—— —fdkdke Y Y Dgi (ba+ b, k+K)p1 1K),  (3.90)
Na | 051, |, n=1j=0
and
d(p1)2 _
Ly PR - f dkdk ¢! &) R
Na 6sla a
co |n+n| r-1
x Y Y Y @™ DS (b, b,k K 1)) (K), (3.91)
n,n'=0r=|n-n'| s=0
r#0
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where the FLR gradient operator D'~

ann

,(bg, b,k K') is defined by

; Ip+kl ;
=2 Y |Shal N Ky (ba) Koy () i+ K)
P t=Ip—kl

\/ TJ_a

+67,a?* NIV in F | (K (b Ky () + 1 K (W) Kin (b))

+

TR Y S e B
(52—52 )]af NLIltVIH(_—)
TJ_a

Tia|b2+b2

B 5 Kn(ba) Ky (b) | - (3.92)

—5{,a’kaffﬁln

In Eq. (3.92), we define b}, = k’L 0 +ha- The identities above to obtain the gyrokinetic corrections
to the projection of the guiding-center velocities and accelerations in Egs. (3.69) and (3.70)
analytically in terms of moments N, of the distribution function F,.

3.3 Gyrokinetic Poisson’s Equation

In order to evaluate the electrostatic potential ¢ appearing in the moment-hierarchy equation,
Eq. (3.65), we derive a Hermite-Laguerre formulation of the Poisson’s equation valid at k; ps ~ 1
in gyrocenter coordinates. We start from Eq. (2.127) and use the pullback operator in Eq. (3.23)
to write the guiding-center distribution function F, in terms of the gyrocenter distribution
function F, in guiding-center coordinates. This yields

10Fa@) | u0Fa(?)  o0F.(2)

& 3.93
oy 81Tom g (399

FoZ)=F,(Z)+gX VE,2)+ g

Similarly to Section 2.5, we neglect the gyrophase dependence of the distribution function
F,<¢? (F_a)ﬁ. For consistency, we also neglect higher order contributions in Eq. (3.93) as they
can be shown to be higher order (Hahm er al.,, 2009; Madsen, 2013a). We therefore write

Fo(Z) = (Fo)z + %?’Zlﬂ 2 <§_;>R. (3.94)
By plugging Eq. (3.94) in Poisson’s equation, Eq. (2.127), we obtain
€V-E= ;qa (N,z+ Nap), (3.95)
with Nz the gyrocenter density
Ng= f eik'RZ—E Jo(k1 pa) (Fo) g dvydudi, (3.96)
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and N the polarization density

__0(Fa)%
d) R

B 2
I da
—T
0 1 Gﬁ

mg, B

) (3.97)

Nag = [ dvdudo

with Iy defined by Eq. (2.128). In the expression for N R

Bessel functions and Laguerre polynomials, Eq. (3.75), and write N in Fourier harmonics as

Eq. (3.96), we use the relation between

Ng=Y Kub)N, . (3.98)
n

For the polarization density Ngg, we expand both ¢; and (F_a) in Fourier harmonics, yielding

- qaﬁa & nl — —*0m
NgR) ==—|) > Kib)p(RN, (K&
TJ_a n=1m=0
SR = iK'-R / I\ 0P g
- ZO |Z lair ZO ™ RK (by+ D) K (W) N, " ()5 | - (3.99)
S, r=0r=[s—r p=

t#0

We note that, in the drift-kinetic limit ¢»; =0 and k, ps <« 1, the Poisson’s equation in Eq. (3.95)
reduces to the one in Eq. (2.132).

3.4 Conclusion

In this chapter, a full-F gyrokinetic moment-hierarchy is derived, able to evolve the turbulent
plasma dynamics in the tokamak periphery. The moment-hierarchy equation is derived
from a gyrokinetic equation where second order corrections with respect to the drift-kinetic
equations are included to describe k; ps ~ 1 fluctuations. The equations of motion are derived
by using the perturbation approach provided by the Lie transform framework. We describe the
main elements of this approach. This allows us to describe the evolution of the coefficients
of the Hermite-Laguerre expansion of the gyrokinetic distribution function analytically in
terms of moments of the distribution function, including the gyroaveraging of the electrostatic
potential. Finally, a Poisson’s equation valid in the gyrokinetic k; ps ~ 1 regime is derived.
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4 Full Coulomb Gyrokinetic Collision
Operator in the Moment Expansion

Due to the lower temperature values and associated high collisionality with respect to the core,
the use of a gyrokinetic model to simulate the plasma dynamics in the tokamak periphery
requires an accurate collision operator. In fact, collisions set the level of neoclassical transport
and strongly influence the turbulent dynamics by affecting the linear growth rate and nonlinear
evolution of turbulent modes (Hirshman & Sigmar, 1981; Lin et al., 2004; Barnes et al., 2009).
Since the first formulations of the gyrokinetic theory, there have been significant research
efforts to take collisions into account (Catto & Tsang, 1977; Brizard, 2004; Abel et al., 2008;
Barnes et al., 2009; Li & Ernst, 2011; Esteve et al., 2015). The first effort devoted to a gyrokinetic
collision operator can be traced back to the work of Catto & Tsang (1977), later improved by
Abel et al. (2008) by adding the terms needed to ensure non-negative entropy production.
These works lead to a linearized gyrokinetic collision operator model was proposed that
contained pitch-angle scattering effects and important conservation properties. A linearized
gyrokinetic Coulomb collision operator derived from first principles was then presented in Li
& Ernst (2011) and Madsen (2013b).

As turbulence in the tokamak periphery region is essentially nonlinear and the level of
collisions is not sufficient for a local thermalization, the distribution function may signifi-
cantly deviate from a local Maxwellian distribution (Tskhakaya, 2012). Therefore, a nonlinear
full-F formulation of the gyrokinetic collision operator is crucial to adequately describe the
dynamics in this region. Only recently several theoretical studies have emerged in order to
derive full-F collisional gyrokinetic models that keep conservation laws in their differential
form, by providing a Poisson bracket formulation of the full nonlinear Coulomb collision
operator (Brizard, 2004; Sugama et al., 2015; Burby et al., 2015). However, the presence of a six-
dimensional phase-space integral in these formulations of the nonlinear Coulomb collision
operator makes their numerical implementation still extremely difficult.

In this chapter, the gyrokinetic Coulomb collision operator is derived in the gyrokinetic
regime in terms of a two-dimensional velocity integral only, that can be efficiently imple-
mented in numerical simulation codes. The derivation of the full Coulomb collision operator
described here is based on a multipole expansion of the Rosenbluth potentials. This allows us
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to write the Coulomb collision operator in terms of moments of the distribution function and
apply the gyroaverage operator to the resulting expansion. The Coulomb collision operator
and its moments are then expressed in terms of two-dimensional (v and p) integrals of the
distribution function. We show that the gyroangle dependence of the expansion coefficients
can be given in terms of scalar spherical harmonics Y;,, (¢, 0) with ¢ and 8 the polar and the
azimuthal (gyroangle) respectively. This allows the gyroaverage integrations to be performed
analytically at arbitrary values of the perpendicular wavevector k, . Furthermore, inline with
the previous chapters, the distribution function is expanded in a Hermite-Laguerre polynomial
basis, and the Coulomb collision operator is projected on the same basis.

This chapter is organized as follows. Section 4.1 derives the gyrokinetic equation up to
second order in € including collisional dynamics, and Section 4.2 presents the multipole
expansion of the Coulomb collision operator. In Section 4.3, the Coulomb operator is ported
to a gyrocenter coordinate system, while Section 4.4 makes use of the Hermite-Laguerre
polynomial basis to obtain a closed form expression for the gyrocenter velocity moments of
the Coulomb collision operator. The moment expansion of the unlike-species gyrokinetic
collision operator is presented in Section 4.5 using an expansion based on the smallness of
the electron-to-ion mass ratio. The conclusions follow.

4.1 Gyrokinetic Collisional Ordering

The evolution of the gyrokinetic distribution function (F,) is given by the gyrokinetic equation,
Eq. (3.57). We note that the collisional term decouples the evolution of (1_3@)5 a F,. To make
further progress, we estimate the order of magnitude of the gyrophase dependent part of the
distribution function F, = F, — (F_a)ﬁ, where F, obeys Eq. (3.56) and (F_a>§ Eq. (3.57). In order
to estimate the amplitude of F:a, we note that the equation for the evolution of F:a =F,- (F_a)ﬁ
can be obtained by subtracting Eq. (3.57) from Eq. (3.56), yielding
%+ﬁ-%+ﬂg—%+56£’ = L CFu T - CFa Py 4.1)

To lowest order, gdgF_a ~ QuF, and 0, ~ I_{ Vg ~ 7”6,,—" ~ €Q;. The estimate of the col-
lisional term on the right-hand side of Eq. (4.1) is more delicate. Ordering C(Fy, Fp) =
Co(Fa, Fp) +€5C1(Fg, Fp) + ... with Co(F,, Fp) ~ V4 F,4, and noting that the first order gyrocenter
transformation Z; in Eq. (3.7) is mass dependent (i.e., g, ~ §};VMe/m;), the magnitude of
the Coulomb collision operator for electrons can be estimated as

ees /%Q,ﬁe@] . (4.2)

C(Fe,Fp) ~VeFo(Z) ~€,QiFo(Z) + 0

64



4.2. Multipole Expansion of the Coulomb Collision Operator

A similar argument holds for the ions, yielding

= == [Me = M = [Me | —
C(F,Fp) ~ViFi(Z) ~ | —VeFi(Z) ~ | —€yQ; Fi(Z) + O | €€s _QiFi(Z)]- 4.3)
mi; mj mj

Equations (4.2) and (4.3) show that the lowest order collision operator C (F,, Fp) is, in fact,
O(e?), as the next term in the expansion of C(F,, Fp) is O(€®\/mgIm;). Therefore, in this
chapter, when describing the Z dependence of the distribution function F, and F}, in the

collision operator C (l_ca,l_?b), we use the lowest order approximation Z=~17. Using the orderings
of Egs. (4.2) and (4.3), we obtain

F m
e _eev <€2, (4.4)
(Fe)dg ™M
and
F, 7
—L e, <€ (4.5)
(Fidg mi

showing that, up to second order in ¢, the gyroangle dependence of the distribution function
can be neglected in Eq. (3.57). We remark that a similar estimate for the gyrophase depen-
dent part of the guiding-center distribution function F, was found in Egs. (2.44) and (2.45).
Therefore, a leading order estimate of Eq. (4.1) leads to

= 1
Fy~

0 R — — — —/
aZ |60 (Form Forg) - o (Forg. P @@’ (4.6)
Finally, by taking Rand v_” to be at most O(e?) accurate, the gyrokinetic equation valid up to
second order in € can be written as

0 — =~ 0 — -0 — -
Py (Fa)g +R- = (Fa)g + 7 6_1/_” (Fa)g = Xb: (ColFa)g, (Fp)R)Ig- 4.7

We note that although in Eq. (4.7) only the lowest order in €5 collision operator is used, i.e.,
Co ((F_a>§, (F_b>§), all orders in k, p; are kept.

4.2 Multipole Expansion of the Coulomb Collision Operator

The goal of this section is to find a suitable basis to expand f;, such that the Coulomb operator
in Eq. (2.32) can be cast into a sum of moments of f,. We start by noting that the Rosenbluth
potential Hj, in Eq. (2.33) is analogous to the expression of the electrostatic potential due to
a charge distribution, a similarity already noted by Rosenbluth et al. (1957). This fact allows
us to make use of known electrostatic expansion techniques (Jackson, 1998) to perform a
multipole expansion of the Rosenbluth potentials. We first Taylor expand the factor 1/|v—v/|
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in Eq. (2.33) around v=0if v < v/ or around v/ = 0 if v > v/, yielding

00 (—V,)l al 1
1 T 'F(_)’ V=
_ 1=0 . A" v (4 8)
v—v| | 2w a1 , '
Z _— —l = v<v.
= I aw)\v

where we used the identity dy(1/|v —V'|) =9 = —0y(1/0’). Both v < v/ and v > v’ cases are
included in order to take into account the fact that f;,(v) is, in general, finite over the entire
velocity space v'. Denoting Y!(v) the spherical harmonic tensor (Weinert, 1980)

Y (v)=

el-n! \ov) v’ (4.9)

(_1)lv21+1 ( 9 )l 1

we obtain the following form for Hj,

W)! w)!

X 2-nN , ; , / o
l! - fb(v) U21+1 Y (V)dv +‘/I;r>vfb(V)(vl)zl+l Y (V)dv . (4.10)

H,=2)

1=0

In order to simplify Eq. (4.10), we note that the tensor Y!(v) = ﬁ (v) is symmetric and
totally traceless, i.e., traceless between any combination of two of 1ts indices. Symmetry
arises from the fact that the indices in Y ‘i ﬁmy(v) are 1nterchangeable as the velocity derivatives
commute for v # 0. The traceless feature, i.e., Y , Y, m y(v) 0 between any pairs of indices,
stems from the fact that the contraction between any two indices in Yl (v) leads to the
multiplicative factor V‘z, = Oy - Oy(1/v) which vanishes for v # 0. In the reasonlng above, we
exclude the value of v = 0 since the classical distance of closest approach should be smaller
than the Debye length, which effectively limits the maximum impact parameter (hence the
minimum velocity) for small-angle deflections in the plasma (Li & Ernst, 2011). Furthermore,
by defining the tensor (v)"l[S as the traceless symmetric counterpart of (v)! [e.g., (v)%S =vVv-—
1v2/3 with I the identity matrix], we replace the tensors (v')! and (v)! in Eq. (4.10) by their
traceless symmetric counterpart (v/ )és and (v)lTS respectively

21-DN v)!
Hj = ZZ( ') (f fotv) 21}? Y )dv+f folv )( ,M Y Wav|, 4.1y

as they differ only by terms proportional to the identity matrix that vanish when summed
with Y/(v) and Y/(V)) [e.g., (v* — W3) - Y2(v) = (v?/3)1-YA(v) = (1?/3) L4 Y2, = 0]. Finally,
we relate the tensors (v)lTS and Y/(v). For[=0and [ = 1, we have Y'(v) = (v/ )%s =1 and
Y!' (V) = (v))}s = V. For [ = 2, applying Eq. (4.9), we obtain
/2
V) =vv - = SI= V)i (4.12)

The results obtained for [ = 0,1 and 2 can be generalized, i.e., (v/ )lTS = Y'(v') as proved by
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induction (Weinert, 1980). The Rosenbluth potential H;, can therefore be written as

Y (V')

2l—1)” , l y
Y( ) ( 2)l+1/2f fb(V)Y (V)dV f fb( )Wd . (413)

The first term in Eq. (4.13) can be regarded as the potential due to the charge distribution
fp(¥') inside a sphere of radius v, while the second term is the potential due to a finite charge
distribution f, (V) at v/ > v.

We now look for an expansion of fj, that allows us to perform the integrals in Eq. (4.13)
analytically by writing Hj, as a sum of velocity moments of fj,. We consider the basis functions

Y*w) =Y ) L2 (), (4.14)

with L;C“/ 2(v) an associated Laguerre polynomial. The basis Y*¥(v) is orthogonal, with its
orthogonality relation given by (Banach & Piekarski, 1989; Snider, 2017)

/e‘VZY"k'(v)Ylk(v)dv-T’k =81 d 2ol T, (4.15)

where T** is an arbitrary symmetric and traceless tensor, and afc a normalization constant

DA+ k+1/2)!

ol=—"——""=" 4.16
k™ ol(1+1/2)1k! (4.16)

A proof that Y¥(v) is also a complete basis can be found in Banach & Piekarski (1989), where
the equivalence between Grad’s moment expansion in tensorial Hermite polynomials (which
forms a complete basis) and Y'*(v) was shown. We then write fras

00 v Mlbk
fo=fup ) Y{,’C( )—l 4.17)
1 k=0 Uthb ot

with fs, a Maxwellian

2

112

f L= nbe thb (4 18)
Mb =332’ :
Vinp™®

and, according to Eq. (4.15), the coefficients M]lolC obtained by taking velocity moments of fj, of
the form

Mlk__ff (V)Ylk( v

Uthb

)dv (4.19)

Finally, we note that Eq. (4.17) allows us to retain only the ! = k = 0 moment in when the
plasma is in thermal equilibrium.

Plugging the expansion for f}, of Eq. (4.17) in Eq. (4.13), the following expression for Hj, is
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obtained
_ @r-nn
Hy = 312 T
VthpT™'" g Loy
Y0 (T iz, el Loanl (o gt wal'k
LUHD/2 'fo e L (x dfo (DY (D)do"-M,,
b
0o ) ’
2 2Y(0)- f e LM Wdx f Y (0)Y (ﬁ’)da’-Mg,k), (4.20)
Xp

where we define x;, = v/ v?hb the normalized velocity, o the solid angle such that dv =

v2dvdo, and use the relation Y/ (v) = v'Y! (D) with v = vd (Weinert, 1980). We note that
Y!(9) and Y/ (v) are species independent, and therefore the species subscript is suppressed. Ap-
plying the orthogonality relation of Eq. (4.15) for k = 0, and expanding the associated Laguerre
polynomials using Eq. (2.69), we write Hj, as

omy g L, Y0 M

Hp=—2 —=
Uthb l,k m=0 a'gc 2l+ 1
1 1 T mtl+1/2 w2 [ -
VE s, e e [ e anas) D
X *b
b
where the identity
I-nN 2 1

= , 4.22
2l1+1/2)  m2l+1 (4.22)

is used to simplify Eq. (4.21).

The expression of Hj, in Eq. (4.21) corresponds to the one in Ji & Held (2006), having
replaced the Y!(v) tensors by the P!(v) tensors which are defined by the recursion relation [see
Eq. (14) of Ji & Held (2006)]

2

Pl+1 — Pl _
W =vP' W=

ip’ W), (4.23)
ov

with P°(v) = 1 and P! (v) = v. We can indeed prove that Y/(v) = P!(v) by deriving the tensor
Y! () using Eq. (4.9), yielding

0 i (-1’ 20c1,00 1 | 5 071
Zylw) = 20+1 2 -
vy W= gy |G D et iy
21+1 U21+1(_1)l 6l 1 (_1)l+1v2(l+1)+1 6l+1 1
= V —_—— — J—
2 2I—DN ovl v @I+ ovitlp
21+1
== [vY’(v)—Yl“(v) . (4.24)
v

Equation (4.24) is the same recursion relation as Eq. (4.23). As Y°(v) =P°(v) =1 and Y} (v) =
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4.2. Multipole Expansion of the Coulomb Collision Operator

P!(v) =v, the proof is complete.

The integrals in Eq. (4.21) can be put in terms of lower

I*= % fo " dxe kD12, (4.25)
and upper
¥ = L7 gxeextevrz (4.26)
VT Jx,

incomplete gamma functions (Abramowitz et al., 1965), yielding

Hy =

2ny, k Lgcm Y (D) -Mék (Iil+2m+2

112 ;12m+1
T ) : (4.27)
Xp

Vthb Tk m=0 056 2l+1

A procedure similar to the one used to obtain Eq. (4.27) can be followed for G, by expanding the
distribution function f; appearing in the second Rosenbluth potential G, and using Eq. (4.17),
therefore obtaining

Gy = 2 o o Ly YO M
b_

21+2m+4
1 (I+ l

2+1 2m+1
+x Ir
Uthb Tk m=0 0';6 2l1+1 21+3 x;}lﬂ)/z b )

1 Lzrl+2m+2 (4.28)

+ xé/212m+3)

" 92l-1 xél—l)/z

Having derived a closed form expression for the Rosenbluth potentials, we now turn to the
full Coulomb collision operator. We first note that, although the Rosenbluth potentials H;, and
Gy, are linear functions of f;, the Coulomb collision operator is, in fact, bilinear in f, and f},.
In order to rewrite the Coulomb collision operator in Eq. (2.32) in terms of a single spherical
harmonic tensor Y/ (v), we make use of the following identity between symmetric traceless
tensors (Ji & Held, 2009)

min(l,n)—u
[Yl_u(ﬁ)-M;k]-u[Yn_u(ﬁ)-MZk] — Z dlg—u,n—qu+2n—2(i+u)(I)).(Mlak‘i+uqu)TS’ (4.29)
i=0
where -" is the n-fold inner product [e.g., for the matrix A = A;, A1 A)jj =2k AkiAxjl. The
d ll """ coefficient can be written in terms of the coefficient

in_ Unl(=2)'@l+2n-2)1+n)!

" = , 4.30
! Cl+2m)ill-D!(n-D'U+n-1)! ( )
as
1 h h _Zj:iig’n_zj:ig
di"= Y DMy e (4.31)
=1

. h s —
GIX i ij=i J
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Chapter 4. Full Coulomb Gyrokinetic Collision Operator in the Moment Expansion

Expanding f, and fj using Eq. (4.17), the expression for the Rosenbluth potentials in Eqs. (4.27)
and (4.28), and the identity in Eq. (4.29), the collision operator in Eq. (2.32) can be rewritten in
terms of products of M{F and Mlbk, as shown in Eq. (2.72), that is

L
]c —qr llcmnqr
C(far fo) = fam Z Z Z o Cay (4.32)
L,k,n,q=0m=0r=0 k q

with

Ikmngr min(2,l,n) l min(l,n)—u ] J+2n—2(i+1) e nq

_ m,nr —u,n—u +2n-2(1+u)  » 1+u
cy =Y VITRH Y Ay (0)-(Mif-my) L @33)
u=0 i=0

The quantity vlm " consists of a linear combination of I and I! integrals and its derivatives,

which can be wrltten as linear combinations of the error function and its derivatives. Their
expressions are reported in Ji & Held (2009). Equation (4.33) corresponds to Eq. (2.73) with
Yl+2n—2(i+u) (1')) replaced by Pl+2n—2(i+u)(ﬁ).

4.3 Gyrokinetic Coulomb Collision Operator

In Section 4.2, the Coulomb collision operator is cast in terms of velocity moments of the
multipole expansion of the particle distribution function f. We now express it in terms of
the gyrokinetic distribution function (F_a>§. As a first step, the gyroangle dependence of the
basis functions Y'* is found explicitly by using a coordinate transformation from particle
phase-space coordinates (x,v) to the guiding-center coordinate system Z. This allows us to
decouple the fast gyromotion time associated with the gyroangle 8 from the typical plasma
turbulence time scales. The multipole moments M** can then be written in terms of guiding-
center velocity moments of the guiding-center distribution function (F,) for arbitrary values
of k) ps. As a second step, the gyrocenter coordinate system Z is introduced by using the
coordinate transformation T of Eq. (3.7). As shown in Section 4.1, up to second order in €, only
the lowest order collision operator Cy needs to be retained. This allows us to straightforwardly
obtain the gyrokinetic collision operator from the guiding-center one by a simple coordinate
relabeling.

We first derive the polar and azimuthal angle (gyroangle) dependence of the Y!(v) tensor
in terms of scalar spherical harmonics. This is useful to analytically perform the gyroaverage
of the collision operator in the Boltzmann equation, Eq. (4.7). We first show that the Laplacian
of Y/ (v) vanishes, i.e., that Y/(v) are harmonic tensors. By applying the operator V2 to Y!(v)
defined in Eq. (4.9), and recalling that V2(1/v) = 0 for v # 0, we obtain
2(-Dl@l+1)v?H! a\'1 a\"*11

I+ =) — + —
I-nn ov ov v

v2Yl(v) = =0, (4.34)
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4.3. Gyrokinetic Coulomb Collision Operator

since

as can be proved by induction (Weinert, 1980). The angular dependence of Y!(v) can be
found by expressing the Laplacian of Eq. (4.34) in spherical coordinates. Using the fact that
Y!(v) = v'Y!(9), we obtain

0=V2Y' () = VZ[0'Y! (9)]
#? 29

=Y (9) (— + ——) vl — 0212 (1), (4.36)
ov?: vov

where L? is the angular part of V2 multiplied by v?

I’ =

= (4.37)
sing 0@

1 0 ( .0 ) L] 02
sing— |+ — —,

4 0p) sing? 062
with ¢ and 6 that can be chosen to correspond to the pitch and the gyroangle, respectively,

defined in Eq. (2.8). Performing the scalar v derivatives in Eq. (4.36), the following differential
equation for Y! (v) is obtained

LY () = 10+ DY (D). (4.38)

We identify Eq. (4.38) as the eigenvalue equation for the scalar spherical harmonics Y7, (@, 0)
(Arfken et al., 2013). Therefore, using Eq. (4.38), and denoting e!” the basis elements of Y!(v)

Im

(an elementary derivation of the basis tensors e/ is shown in Appendix C), we write Y/ (v) as

Y=oy 222 Sy el 4.39
w)=v mm:_l lm((/’» Je' . (4.39)

Having derived the gyroangle dependence of the Y! (v) tensors, we now compute the fluid
moments Mflk in terms of v and y moments of the guiding-center distribution function (Fy).
We first consider a vanishing Larmor radius p = 0. Using Eq. (4.19) and considering that, up to
second order in €, f,(X,V) = (F,)x [see Egs. (2.44) and (2.45)], we obtain

n Mk = f (Fa) (YK dv. (4.40)
The operator (...)x is the gyroaverage operator holdingx = R+ p, p and v fixed while averaging

over 0. This is opposed to the operator (...)g, where all Z coordinates but 8 are kept fixed. The
two operators coincide in the zero Larmor radius limit, p = 0. Using Eq. (4.39), the gyroaverage
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Chapter 4. Full Coulomb Gyrokinetic Collision Operator in the Moment Expansion

of the tensors Yflk holding x fixed is given by

¥y = L2 (%) 2wl i (Yim(p,0))5€™. (4.41)
k 2l1+1/2)! =, X

By rewriting the spherical harmonics Yy, (¢,0) in terms of associated Legendre polynomials
P} (cos ) as (Abramowitz et al., 1965)

Ql+1) (I-m)
47 (I+m)!

Yim(@,0) = (-1)™ P/"(cos¢p)e'™, (4.42)

and noting that, for m =0, P? (cos ) = Pj(cos ) with P; a Legendre polynomial of order [, we
obtain

Ik _  Ipl+1/2,.2 T 210(1+1/2) 4
Y)x=v' L "“(v)Pi(cosy) me ) (4.43)

The gyroaveraged formula Eq. (4.43) proves Eq. (20) of Ji & Held (2006) where elis replaced
by P!(b). The fluid moments in Eq. (4.40) can therefore be written as

[m211(1+1/2)
naMékz mem[<Fa> UIL?—UZ(JCZ)PZ(COS(p)dU” au. (4.44)

Using Eq. (4.17), the gyroaveraged distribution function at fixed x can be written as

x  [l2niI+1/2) 4, MYF
= ————— el )P . 4.45
(fa)x fMul;O ST T = v L (xg) Pr(cos ) (4.45)

Equation (4.45) proves the gyroaveraged formulas for (f) used to derive closures for fluid
models at arbitrary collisionality in the vanishing Larmor radius limit in Ji et al. (2009, 2013); Ji
& Held (2014).

In order to perform the velocity integration in the definition of the moments M'* at
arbitrary k, p in guiding-center phase-space coordinates, we introduce the identity f(x) =
J f&)6x—x)dx' imposing X' = R+ p, and writing the volume element in phase-space as
dx'dv = (B / m)dRdv)dpdf, we obtain

*

B
noMFx) = f faR+pa, VY v/ v,)6x—R- pa)E”dev”dudH. (4.46)

Using Eq. (2.39), noting that v = v(Z) due to Eq. (2.8), and performing the integral over R in
Eq. (4.46), it follows that

*

B
naMék(x) = fFa(x—pa, UH,M,Q)Ylak [VX— g, vH,y,H)/vtha]E“dv”dudB. (4.47)
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4.3. Gyrokinetic Coulomb Collision Operator

Using the orderings in Egs. (4.4) and (4.5) for the guiding-center distribution function F,,
we remove the 6 dependence from F, by approximating F, = (F,)g, effectively neglecting
second order effects in ¢ in M/¥, hence in the collision operator C(f;, f;). To make fur-
ther analytical progress, we represent F, (R, v, u, 0) by its Fourier transform F,(k, v, 4, 0) =
[ FaR, vy, 1,0 e”*R4R, and write

. . By
naMy () = f (Falle, vy, O Y Vx—=pa, vy, 11,0)/ venal e’ P — dkdvydudf. (4.48)

By aligning the k coordinate system in the integral of Eq. (4.48) with the axes (b, e}, e;) [see
Eq. (2.8)], we write exp(—ik- p) = exp(—ik, p cosf). We then use the Jacobi-Anger expansion
in Eq. (2.126), and rewrite Eq. (4.48) as

nMif 0= ) (17 f Jp(k1p) (Falk, v, 1, 0))g €**
p=roe (4.49)

1k -i QBlT
x Y VX = pa v, 1,0) vipgle P dedv”d,udﬁ.

The spatial dependence R of the particle velocity v(Z), as shown in Egs. (2.8) and (2.11), is
given uniquely by the basis vectors b, e;, and ey, and the magnetic field B. Therefore, the
velocity v in the argument of Yflk in Eq. (4.49) can be expanded as

VX~—pa V), 1,0) =v(X, v, 1,0) + O(p, - Vlog B). (4.50)

The second term in Eq. (4.50) introduces higher order terms in the collision operator and is
therefore neglected.

Using Eq. (4.39) to express Y.¥(v) in terms of spherical harmonics, we perform the gyroan-
gle integration in Eq. (4.48), and define the Bessel-Fourier operator

jmlFal = f Tk pa) (Falk, vy, 11,0)) ™% dlk, (4.51)

to obtain the final expression for the fluid moments M'¥ in terms of coupled v and x moments
of the guiding-center distribution function (F,)g

8172 !

M*x) =4 —— Im_pym gtk (%), (4.52)
naMa 0=\ o o D ™
with
1k Iyl+1/2,.2 BIT
M (x) = f JmlEalv! L2 00) Yim (0, 0)— - d vy dp. (4.53)

Equation (4.52) can now be used to express the collision operator C(fy, fp) in terms of v
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Chapter 4. Full Coulomb Gyrokinetic Collision Operator in the Moment Expansion

and p integrals of (F,;). Using Egs. (4.32), (4.33) and (4.39), and defining
El{sljzt =el+n—2i v (e Is i nt)TS» (4.54)

we can write the collision operator in Egs. (4.32) and (4.33) as a function of the .# fl’fn moments,
i.e., we can express

min(Z,l,n) min(l,n)—u I+n—-2i-2u

lkmngqgr l-u,n—-u l Isnt
Cab 2_:0 Z d z-’i-lu Z t—X—: Z . Ez-si—,Zt v
u= i=0 s=—1 ny=—(l+n-2i-2u) (4.55)
Im,nr, 2
V*abu v Ik nq
X Yiin-2i—ou y((P,Q)—./% (X)J%b[ x),
nanp
with
In 8 27172\l (1 + n—20)!
a; = — - . (4.56)
pbn=i \[ (1+1/2)!(n+1/2)!(I+n—-2i+1/2)!

We now focus on the gyroaverage of the collision operator in Eq. (4.55). We first note that

. lkmngr
the gyroanglefinc_,

fluid moments . é’; and 4 ; tq as the latter are functions of x = R+ p. To make the gyroangle

is present only in the spherical harmonic Y7, ,,-2;-2, ,(¢,0) and the
dependence explicit, we write both .« éls“ and .« I:l tq in Fourier space as

M) M (x) = f dkdk ' ®OR g1k 1) 4 () e K ParPr), (4.57)
Using the Jacobi-Anger expansion of Eq. (2.126), we find that

(Vi 9,00 E R} )y = [ kA e AR g1 0070 )

21+1 (l-m)!
47 (I1+m)!

Pl (COS(p)]m(kJ_pa-}-kJ_pb). (4.58)

The gyroaveraged collision operator at arbitrary k; p is therefore given by

lk
(C(Fa, Fp))R = fam Z Z ZLkmLZr g (4.59)
Lk,n,q=0m=0r=
with
lkmngr min(2,l,n) min(l,n)—u Imwn—u l l+n-2i-2u Isnt
n sn
<cab >R: Z Z d Airy Z Z Z Et+uv
u=0 i=0 s==lt=—ny=—(l+n-2i-2u)
bfizvplv+n 2i— Zu(COS(p)VirZi?rztr(vz)
x f Jolkipa+ K, pp)tttk@0.00] ) e ©ORakaK . (4.60)
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4.4. Hermite-Laguerre Expansion of the Coulomb Operator

and

! . (I-2i+v)!

We note that, if only first order k, p terms are kept in the Fourier-Bessel operator of Eq. (4.51),
the collision operator in Eq. (4.59) reduces to the drift-kinetic collision operator found in
Chapter 2.

In Eq. (4.59), the gyroaveraged collision operator is cast in terms of v and y moments
of the guiding-center distribution function (F,) for arbitrary values of k;, p. We now apply
the transformation T of Eq. (3.7) to Eq. (4.59) in order to write the gyroaveraged collision
operator in terms of v and ¢z moments of the gyrocenter distribution function (fa). As shown
in Section 4.1, only the zeroth order component in €5 of (C (F_a, F_b)) is needed in order to
adequately describe collisional processes at first order in the gyrokinetic framework. Therefore,
using Eq. (3.7), we apply the zeroth order transformations Z = Z and F,(Z) = TF,(Z) = F,(Z) to
the collision operator (C(F,, Fj)) in Eq. (4.59), yielding

— = =ik
(C(Fg, Fp))g = fam Z Z Z Ly, Lo @ e, (4.62)
L,k,n,g=0m=0r=
with
lkmnqr min(2,/,n) min(l,n)-u I wn—u l l+n-2i-2u Jent
= n sn
(c >7 Z Z d iy Z Z Z El+u v
u=0 i=0 s=—lt=—ny=—(l+n-2i-2u)
x bfinPlv+n 2i— Zu(U”/v)Vi’Zg;r(vz)
—Ilk —_ . "N.R
x f Jo(kipa+ K pp)tl gty (K)e ®HORaKaK., (4.63)
— — _ —lk
where 7% = vﬁ +2Bu/m and the gyrokinetic moments .# ,,, are given by
*
—lk [ . = —l,0+1/2,2 — BII doda
Mam= | ImlFaV L) Yim (9,0) — - dR, (4.64)

with the Fourier-Bessel operator j,, given by Eq. (4.51). The collision operator in Eq. (4.62)
represents the gyrokinetic full Coulomb collision operator up to O(e?). In this expression,
the integro-differential character of the C(f;, f;,) operator is replaced by a two-dimensional
integral of the gyrocenter distribution function over velocity coordinates v and p [Eq. (4.64)].

4.4 Hermite-Laguerre Expansion of the Coulomb Operator

In this section, we expand the distribution function into an orthogonal Hermite-Laguerre
polynomial basis, Eq. (3.60), and compute the Hermite-Laguerre moments of the Coulomb col-
lision operator in Eq. (4.62). In order to express the collision operator in terms of the moments
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Chapter 4. Full Coulomb Gyrokinetic Collision Operator in the Moment Expansion

N, NP in Eq. (2. 55) and evaluate its Hermite-Laguerre moments, we first consider the gyrokinetic
moments J% ., and write the integral in Eq. (4.64) as a function of the gyrocenter moments of
the form of Eq. (2.55). As a first step, we project both the Fourier-Bessel operator j,,[F,] and
the spherical harmonics Y;,, on the Hermite-Laguerre basis. The g and k; dependence in the
Fourier-Bessel operator j,;, Eq. (4.51), is decomposed using the identity between Bessel and
Legendre functions in Eq. (3.74). The Fourier-Bessel operator in Eq. (4.51), together with the
identity in Eq. (3.74) and the Hermite-Laguerre expansion of Eq. (2.50), can then be written as

o HP(SHQ)L] (—J_a) Lm(sJ_a)STu
Fa a
1= f pZO]ZOrZ N (m+1)!

As a second step, we rewrite the spherical harmonics Yy, (¢, 0) using Eq. (4.42)

f NP b2 e ViekX gk, (4.65)

Zl+1(l—m)'
(I+m)!

Yim(p,0) = (=D™"

Pl (cos ). (4.66)

In order to expand the associated Legendre polynomials le (cos¢) in Eq. (4.66) in a Hermite-
Laguerre basis, we generalize the basis transformation in Eq. (2.81) as

=l =2 1+2k k+11/2] . - — — o\ m/2

v v [ [Z B B
— le ( I ) Ll+1/2 ( 5 ) = E E Tlll)c]m ( la )Lj (_/J ) (—M ) ) (4.67)
Viha v tha p=0 j= Vtha Ty T,

For the derivation of the Tp /" coefficients, see Appendix D. The inverse transformation coeffi-

cients (T71)2" are deﬁned as

pj
- TR\ (GB\™? Ppr2ii+lpi2l 7! v 7
Hy [\ (B2 EZ) = Y () P (2112 S|, @68)
p vtha J Ta Ta P U l 1% k 2
=0 k=0 tha tha

—lk
The gyrocenter moments .4 ,,,, in Eq. (4.64) can be rewritten using the identities in Eqgs. (4.65)
and (4.67) and

m+r+j

LM'xX)Ljx)x™= ) d" Lx), (4.69)
s=0

rjs

with the d -, i coefficients given by

Z Z Z LML 20 4 s+ m), (4.70)

m s
J =0 /1=051= Jh

yielding the following expression

oo I+2kk+[1/2] m+r+u k 2g+m 22
1 L th
~LPtha ”’“) e 4.71)

Ao0=3 3 33 M N 00 [S4E

g=0 h=0 u=0
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where we defined

Mhus — (_pym T dgis/2Ppl (2141 (1- m)!

) 4.72
lkmg — (m+g)! . (I+m)! 4.72)

—lk
Using the form for .# ,,,, in Eq. (4.71), the collision operator in Eq. (4.62) can be therefore
expressed in terms of Hermite-Laguerre moments N”/ of the distribution function. We note

—lk
that in the drift-kinetic limit k p¢p4 = 0, the moments .# ,,,, in Eq. (4.71) reduce to the ones in
Chapter 2.

We now take Hermite-Laguerre moments of the collision operator (C (F_a, F_b)), i.e., we
evaluate

H,Gsy)Li(s|.2) B
pGla)LiSia . dvdudo, (4.73)
\/2Pp! Mg

where we neglected higher order v|b- (V x b)/Q, terms in B|| Writing the gyroaveraged

chi® = [« Fng

collision operator (C(F,, F},)) in Eq. (4.62) using Eqgs. (4.63) and (4.71), and expanding the

Bessel function J, (k1 pq + k' pp) = Ju[(kL + K| mp/ maqal Gp)pthasial using Eq. (3.74), the

lkmnqr

following form for the <c ) term appearing in (C (F_a, F_b))ﬁ is obtained

lkmn . min2,l,n) min(l,n)—u 1+n-2i-2u oo lemnar
€= f > > Y oY prarg i)

abuivz
u=0 i=0 v=—I-n+2i+2uz=0
v I V2 Im,nr =2y i(k+k)R /
xPV . 2u( = )SMLZ(EM)VWW @e dkk'. (4.74)

In Eq. (4.74), we defined the D;’Zrﬁ:’; term

l-u,n—-u _in

phmrar e iy = Z 3 plon B2atve By L_____itu y lkmnarge gy (4.75)

abuivz Pl Pt i+uv (v+2)! abuivz

where By, = (ky + k' "\ mplMaqal qp)Pnal2 and the convolution operator Wlkmnqr(k, k') is

abuivz
given by
lkmnqr i(k+k')-Ry.l & Rk
/ l + +nv

‘/Vabuivz (k’k) b”’“ Z Z
81,82=0h;=0

n+2q k+|1/2) m+gi+u r+g+up n h —hy $1—hy s

111 S1 2 Up Sp N7 N S1 T2 52

y Z Z Z Z Mlkmg Mmgt N Nb ) (4.76)

h,=0 w;=0 1= S=r

with N”” the Hermite-Laguerre moments of the distribution function defined in Eq. (2.50).

Finally, using Eq. (4.62), the result in Eq. (4.74) is used in Eq. (4.73) in order to find the
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Chapter 4. Full Coulomb Gyrokinetic Collision Operator in the Moment Expansion

Hermite-Laguerre moments CZ l’; of the full Coulomb collision operator. This yields

I n

ij _ OXO: Xk: i Lkqur ij,nqr @.77)
ab 1,k,n,g=0m=07r=0 \/ZPP! ab,lkm’
with
min2,l,n) min(lLn)—u 1+n-2i—-2u oo Ik
Chilamte)) = ) 2 > ZDab'nyZr(k,k’)I, (4.78)
u=0 i=0 v=—Il-n+2i+2uz=
and
v — = Im,nr B
I= [ famPpip oi 0,010V g, (_)SMHp(Sna)L](_M)L (sm) dv”du. (4.79)

The integral factor I can be performed analytically by first rewriting the product of two
Laguerre polynomials as a single one using

r+]
LM"(x)Lj(x) = Zd,]SLs(x), (4.80)
with
dpjs = -y Z > Lirll/zL}"h VELLAR (i + s, (4.81)
1=0j=0s=

expressing the resulting Hermite-Laguerre basis in terms of Legendre-Associated Laguerre
using Eq. (4.86), and writing the phase-space volume (B /m)dv|dpi as 72 dvdE with & =7 /7.
This yields

z+jp+2gg+lp/2] st S L
I= Z Z Z d”' (T—I)S“}Cst,lm,nr( N O1vn—2i 2u,s. (4.82)
e e S S pg “xabu (s p)! 47(s+1/2)

For an analytically closed expression ready to be implemented numerically of the factor
CSLIMT = [ fur v ™ (12) L3*1/2(02) 1S dv see Ji & Held (2009). We note that the long-wavelength

limit can be found by setting m; = my = 0 and neglecting second order k, p effects in the

collision operator Eq. (4.78), which yields the Hermite-Laguerre moments of the collision

operator moments found in Chapter 2.

4.5 Small-Mass Ratio Approximation

In this section, we derive a simplified version of the electron-ion and ion-electron Coulomb
collision operators in the gyrokinetic regime by taking advantage of the small electron-to-ion
mass ratio m,./m;. In (x,v) phase-space coordinates, the full coulomb collision operator in
Eqg. (2.32) can be greatly simplified by taking advantage of the fact that, excluding the case
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4.5. Small-Mass Ratio Approximation

T;gTe, the ion thermal velocity is small in comparison with the electron thermal velocity. To
first order in m,/m;, the electron-ion collision operator can be written as (Helander & Sigmar,
2005)

Cei(fe) = Co; + Cy;

ei’

(4.83)

where Cgi and C; ; given by Egs. (2.35) and (2.36), respectively. We expand f according to
Eq. (4.17) and write C?, as

NiLei 1(1+1)
Uthece \/(75C

We now Fourier transform the moments MA* in Eq. (4.84) as MJ¥(R) = [M¥(k)e’*Rdk and
write the gyroaveraged collision operator Cgi as

L;C+l/2 (Cg)Yl((:e) 'Mék(X)' (4.84)

feMZ

<CO>_ fdkelkae Z nlLelg l(l+1)

Lk thece \/Ugc

Using the Jacobi-Anger expansion of Eq. (2.126), Eq. (3.74), and the inverse basis transforma-

L;C+1/2 (Cg) <Yl(ce)elkpe> .Mék(k)nl, (4.85)

tion
7 UB)\ (1B mi2  p+2jj+|p/2] il 72
H, la L; Hb [ HD Z Z (T~ tem Pl || Ll+1/2 . (4.86)
v T T pj 1 7 v
tha a a I=0 k=0 Viha tha
we obtain

r i 12 (I-m)! ime!™ (m+r—i-1)
Yl ik-pey _ n
we™ = ;_I;O,ZOSZO; 20 =12t L+ m)! (m+ 1) (r = D!(m—1)!

x (T"H3mp5 e ecé“le(cosw)P?’(cos(p)Li“lz(cg), (4.87)

with b, = k) prpne/2. Equation (4.87) allows us to express the pitch-angle scattering operator
<C2i> in Eq. (4.85) in a form suitable to project onto a Hermite-Laguerre basis, i.e., to calculate

Cgf / moments of the form

Lj _ B pr2jjtlpi2l (T
o f (%) ””’“) (% )dv”dﬁde— =y —”’ezgfk, (4.88)
Ma 120 k=0 2P p!
where we define
Igfk:f(CSi) céPl(COS(p)Lgcﬂ/z(cﬁ)cgdcedcosgo. (4.89)
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An analytical form for the integral factor I°/F can be derived using the expression for (C2.),
Eq. (4.85), and Eq. (4.87), yielding

k00 = - X M D gt 37 S5 S S rge

wy Vipe VO m=—ur=0;=0s=01t=0
ﬂllzu' (u m)' lm um (m+r—l 1) b2r+m1lusllus (4 90)
20(u—1/2)! (u+m)! (m+r)! (r—dm-11 ¢ Lk Pm ‘
where the integral 1 é‘,ést is given by
koot
=% Y Liy Lim, (mi+m+ (I +u+s)/2-1), (4.91)
ml1=0m2=0

and [ Il)’j; can be calculated using Gaunt’s formula (Gaunt, 1929)

lus ! m m dx
(s+ m)!(u+l—s)!(%’+s)!

(Lo (s (st 14 s+ 1

min(l+s—i,u=m,s—m) (u+m+0ll+s—m—1)!
x Z . (4.92)
t=max(0.s—I—u) Hu-m-0l(l-s+m+(s—m-1)!

u+s—1

-m

Finally, we compute the Hermite-Laguerre moments of the momentum-conserving term
C;l. in the collision operator C,;. By noticing thatu;-c, = y;cje+u1;C1.C0S0, (e’®Py = J, (k1p),
and (e’*P cosh) = iJ1(ky p), the gyroaveraged (C;l.) operator can be written as

2 lLel i
(Chy= " fdkekaMe[ul\z(k)c\lejo(kipl)"'uJ_ZCJ_eljl(kJ_Pz)] (4.93)

the e

Projecting the operator (Cé ;> in Eq. (4.93) over a Hermite-Laguerre basis similarly to Eq. (4.88),
and using Eq. (4.86), we obtain

_ pe2jj+lpl2) (T 1)”“’
1pj _ Vihe 11k
c! —PJ Tl 4.94
e I N N TG (4.94)

where we define
I”k f(C )céPl(cos(p)L§€+1/2(c§)c§dcedcoscp. (4.95)

Using the identity between Bessel and Legendre functions, Eq. (3.74), and the argument
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transformation formula between Legendre polynomials

rorlLg(s ) (@ -1)"k

L(s°)= , 4.96
r(s7)) kgo T T (4.96)
where 7 = T;/ T, in Eq. (4.95), a formula for I}¥ is found
-b?1.2r
2nL by | & r'(T l)r Y 122w o
1k _ “Nitei kR € lli 1
Iei - fdk ' Z )]u|Tr2 Z Z(T )lu
the = U a=0 h=0
r ib;d\(t — l)d_”uli(k) 2w uo o abo| (k+1+1/2)!
T ———0pi01a- 4.97
Zuzo(d W) kT2 (r 4+ 1) a:Obg()( Jou Kelsy OvkOta  (497)

where we defined the perpendicular phase-mixing operator Ay = 2j+1)6j x—(j+ 1) 41,k —
JO -1k

The ion-electron collision operator Cj,, to first order in m,/m;, is given by Eq. (2.37). We
simplify Eq. (2.37) using Eq. (4.5), therefore approximating the distribution function f; by its
gyroaveraged component f; = (f,-)i, and retaining the lowest order collision operator in €5.
The operator we obtain is therefore accurate up to second order in €. This allows us to convert
the C;. operator in Eq. (2.37) to gyrocenter variables Z using the chain rule at lowest order,

yielding
y =
Rei __mivy, OKFog | 0(Fig Me Ne [, —
Ci, = . — 2+ bhb— — 3(F;
S v |5 B on s | i ik
0(Fiyg _0(Fdg T, 0*Fpg 2T, 8 [_0(Fig
+5); il P VR, “R ¢ — |lp—=R (4.98)

— + — — + —
aS”i H O/J 2T; OEﬁi B au H

In order to take the gyroaverage of Eq. (4.98), we Fourier transform the friction force Rg;
asRei(R) = [ R,; (k) e'*Rdk, and use the identity between Bessel functions and associated
Laguerre polynomials in Eq. (3.74), yielding

0(Fi)g 0(Fig

Rei(K)el*R |_ ) Me N _
(Cie>=fdkel—' siiexiJi(kipi) +bJo(k1pi)—= ei— —|3(F;)
min; 5 asyi i N
3 (Fi)w 0(Fiyx T, 0*°(F)x 2T, o 0(Fi)w
+§||l-—<_l>R +257 <_21>R +— Fog + == 5%, (_21 R (4.99)
0s); ds7; 2T; 6s”l T; Osﬂ as];

Finally, we take Hermite-Laguerre moments of the gyroaveraged ion-electron collision opera-
tor (Cje) in Eq. (4.99), yielding

. 00 2r —b r+j 1s
CPl = v, 22y BPINTF - fdkRe (k)e’kRZ de\/ N"""b
m; lk r'min; | S
r d+] d —ps—1
e ) Y il [(s+ DN =N | (4.100)
t=0 s=0
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with

i . T . T,
B! =2j61,6kj1 (1 - ?e) —(p+2))81,0k; +V/p(p—1)b1p_20k; (f - 1). (4.101)

4.6 Conclusion

In this chapter, a formulation of the full-F gyrokinetic Coulomb collision operator is derived,
able to describe the plasma dynamics and turbulence at the tokamak periphery at arbitrary
collisionalities. This extends the previous full-F Coulomb collision operator derived in Chap-
ter 2 within the drift-kinetic limit to the gyrokinetic regime. The Coulomb collision operator
derived in the present chapter is expressed in a gyrocenter coordinate system, with parallel
and perpendicular velocity integrals of the gyroaveraged distribution function expressed in
terms of the g and v variables. The operator in Egs. (4.62) to (4.64) is valid at all orders of k| ps,
for distribution functions arbitrarily far from equilibrium and for an arbitrary collisionality
regime. By expanding the gyroaveraged distribution function into an Hermite-Laguerre basis
and evaluating the resulting projection of the gyroaveraged collision operator on the same
basis, the collision operator we derive can be coupled to pseudospectral formulations of the
gyrokinetic equation, filling a gap in the literature by providing a full-F Coulomb collision oper-
ator for gyrofluid models. Ultimately, the results of the present chapter provide the theoretical
framework needed to perform qualitative and quantitative studies of turbulence, flows, and
the evolution of coupled background and fluctuating profiles in the periphery of magnetized
fusion devices.
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5 Linear Theory of Electron-Plasma
Waves at Arbitrary Collisionality

Electron-plasma waves (EPW), also called Langmuir waves or plasma oscillations, are oscil-
lations of the electron density at the plasma frequency resulting from the breaking of local
charge neutrality (Bohm & Gross, 1949; Malmberg & Wharton, 1966). The displacement of
electrons leads to an electrostatic force that, by pulling electrons back to their equilibrium
position, results in oscillations of the electrostatic potential and electron density. In a colli-
sionless system, the amplitude of EPW decreases with time due to Landau damping (Landau,
1946). The phenomenon of collisionless Landau damping is well understood, both linearly
and non-linearly (Dawson, 1961; O’Neil & Rostoker, 1965; Zakharov, 1972; Morales & O’Neil,
1972; Mouhot & Villani, 2011). When Coulomb collisions are present, although collisional and
Landau damping of EPW are known to act synergistically (Brantov et al., 2012), the physical
mechanisms which dictate their interplay are considerably less understood. This is despite
the fact that understanding the behavior of EPW with collisions is important since Coulomb
collisions significantly contribute to the behavior of many important laboratory plasmas, such
as magnetic (Scott, 2007) and inertial fusion (Lindl et al., 2004) plasmas, and plasmas for
industrial processing (Lieberman & Lichtenberg, 2005). Collisions also influence the dynamics
of EPW in near-earth space plasmas (Jordanova et al., 1996), and can even be the only source
of significant damping of EPW in low-temperature laboratory plasmas (Banks et al., 2017). We
note that, even if the limits considered to study EPW are typically different than the ones used
in Ch. 2, elements of the formalism developed therein, particularly for the collision operator,
can still be applied. In particular, as we show, the averaging operation we perform in Sec. 5.1.
is equivalent to the gyroaveraging operation performed in Ch. 2.

The need for a simplified theoretical framework able to describe Coulomb collisions at
arbitrary collisionality is widely recognized, and has been the subject of considerable interest
over the past few decades (Callen & Kissick, 1997; Ji & Held, 2010), with a large effort devoted
not only to the study of EPW (Hammett & Perkins, 1990; Brantov et al., 2012; Banks et al.,
2016), but also to ion-acoustic waves (Epperlein et al., 1992; Tracy et al., 1993; Zheng & Yu,
2000), and drift-waves (Jorge et al., 2018). As seen in Chapter 2, the difficulty associated with
an accurate estimate of the collisional damping in a plasma at arbitrary collisionalities is
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related to the integro-differential character of the Coulomb collision operator C(f) (Helander
& Sigmar, 2005). A possible approach to the study of the kinetic properties of EPW is based
on the development of the distribution function on a convenient basis, and the projection of
the kinetic equation on this basis. Indeed, pseudospectral decompositions that expand the
electron distribution function in an appropriate orthogonal polynomial basis have allowed
a rigorous assessment of the effect of collisional pitch-angle scattering in linear EPW and
ion-acoustic waves by including electron-ion collisions while neglecting electron-electron
collisions (justified in a high-Z regime) (Epperlein et al., 1992; Banks et al., 2016). The role of
self-collisions in the linear regime was investigated in Banks et al. (2017) using a simplified
operator with respect to the full Coulomb operator and in Brantov et al. (2012) where a
simplified form for the high order moments of the like-species Coulomb collision operator
was employed in order to derive an analytic dispersion relation.

In this chapter, the model developed in Chapter 2 is used to assess the linear properties
of EPW. The full linearized Coulomb electron-electron and electron-ion collision operators
is considered, without simplifying assumptions. For this purpose, we use a pseudospectral
decomposition of the electron distribution function based on a Hermite-Laguerre polynomial
basis, similar to the one introduced in Chapter 2. The framework used here allows, for the first
time, the evaluation of the frequency and damping rates and, more generally, of the linear
spectrum, of EPW eigenmodes, at arbitrary collisionalities. Among the subdominant modes,
we focus on the analytical and numerical description of the entropy mode, a purely damped
mode that requires the Coulomb collision operator to be properly described (Epperlein, 1994;
Banks et al., 2016). The entropy mode can have a damping rate comparable to other modes in
the plasma [such as ion-acoustic waves (Tracy et al., 1993)] and similar wave-numbers, and it
determines the damping rate of the system on collisional time scales. In fact, as we show, this
mode is absent when the kinetic equation is solved using approximate collision operators or
in one-dimensional velocity space descriptions and, in general, deviations between the results
based on the Coulomb and simplified collision operators (such as the Lenard-Bernstein,
the Dougherty, and the electron-ion operators) are particularly evident. We remark that
the discrepancies in the spectrum observed between different collision operators may lead
to major differences in the nonlinear evolution of EPW. Indeed, stable modes can be non-
linearly excited to a finite amplitude and have a major role in nonlinear energy dissipation
and turbulence saturation, affecting the formation of turbulent structures, as well as heat
and particle transport (Terry et al., 2006; Hatch et al., 2011a). As a test of our numerical
investigations, the results for the Lenard-Bernstein case are compared to the eigenmode
spectrum resulting from an analytical solution where the plasma distribution function and
the electrostatic potential are decoupled. This also allows us to gain some insight on previous
EPW results using the Lenard-Bernstein operator (Bratanov et al., 2013; Schekochihin et al.,
2016). In addition, we compare our pseudospectral decomposition to the one based on a
Legendre polynomial expansion for the case of the electron-ion operator.

This chapter is organized as follows. Section 5.1 presents the moment-hierarchy equation
used for the EPW description, deriving it from the kinetic Boltzmann equation by using
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a Hermite-Laguerre expansion of the electron distribution function. Section 5.2 focuses
on the collisionless moment-hierarchy and derives the collisionless dispersion relation. In
Section 5.3, the oscillation frequency and damping rates of EPW are analyzed and compared
with simplified collision operators. Section 5.4 derives a dispersion relation for the entropy
mode that shows remarkable agreement with the numerical results. Finally, Section 5.5 shows
the EPW eigenvalue spectrum using different collision operators and discretization methods.
The conclusions follow. We note that the results described in the present chapter have been
submitted to publication (?).

5.1 Moment-Hierarchy Formulation of Electron-Plasma Waves

We briefly describe the Boltzmann-Poisson system for an unmagnetized plasma, our starting
point for the description of EPW, and derive a moment expansion of the distribution function
that allows its numerical solution. The Boltzmann equation for the evolution of the electron
distribution function f is given by

of e of .

—+v-Vf+—V¢-—=C(f). 5.1

ot ! m ¢ ov ) 6-1)
In Eq. (5.1), e is the elementary charge, m the electron mass, ¢ the electrostatic potential, and
C(f) the non-linear Coulomb (also called Landau) collision operator of Eq. (2.32), which for
electrons is given by

C(f) =) vpoy- [mﬂb(ava) f—0v(0yGp)-0uf|, (5.2)
b

with vj, the characteristic collision frequency between electrons and species b (b = e, i for
electrons and ions, respectively). We relate the electrostatic potential ¢ to f using Poisson’s
equation

V2 =4ne ( f fdv— no) , (5.3)

where the ions are assumed to provide a fixed homogeneous, neutralizing background, with
density np and a Maxwellian-Boltzmann equilibrium with the same temperature as the elec-
trons. An atomic number Z = 1 is considered. Equation (5.1) is linearized by expressing f as
f=fm1+6f)withd f <« 1and fu an isotropic Maxwell-Boltzmann equilibrium distribution
with constant density ny and temperature Ty, yielding

0fm

ov

L hvever+ %v&p-

3 =C(fmo6f), (5.4)

where we used the fact that C( fu) =0, and C(fy0f) is the linearized version of the Coulomb

collision operator in Eq. (5.2) whose expression can be found in Helander & Sigmar (2005).
The Boltzmann equation, Eq. (5.4), is coupled to the Poisson equation V2§¢ = 4wesn with
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dn= [ fud fdvthe perturbed electron density. We now rewrite Eq. (5.4) in terms of the Fourier
transformed distribution function 6 fi. = ['6 f exp(—ik-x)dx as

36
—tfk+ik~v6fk+ik-v

4me*Sni  C(fm6 fi)
6 )

KTo — fu -5

where we used the Fourier transformed Poisson equation —k?0¢;. = 4medny, with dny =
Jonexp(—ik-x)dx and §¢i = [ Spexp(—ik-x)dx.

Similarly to previous studies on the collisional damping of EPW (Brantov et al., 2012; Banks
et al.,, 2016), a three-dimensional cylindrical (v, ,¢, v;) velocity coordinate system is used,
therefore decomposing the velocity vector v as

V=€, + v (cospey +singey), (5.6)

where (ey, ey, e;) are Cartesian unit vectors with z the direction of the wave-vector k = ke;. In
order to reduce the complexity and the computational cost of the numerical solution to that
of a two-dimensional velocity model, we apply the averaging operator (...) defined by

1 27
(&) (v, V) =— g, @, v)de, (5.7)
27 Jo

to the Boltzmann equation, Eq. (5.4), yielding

06 fi) . . 4me*dn
a{k +lkvz<6fk>+lk1}zW0k

={(C(fmO fr)). (5.8)

Finally, we rewrite Eq. (5.8) by normalizing time to kv;;, with v;;, = 2T/ m the electron
thermal velocity, 6 ny to ng, and v, to vy, yielding

00 fi) _vbng _ AC(fmb fi)
l—at vz {0 fi) iy i Fr )

(5.9

where we define ap = kzl% with Ap = v/ Ty/ (4me?ny) the Debye length, and where the col-
lision frequency coefficient present in C(fas0 fi) is now in units of kv;,. As the linearized
Coulomb collision operator satisfies (C(fas0 fr)) = C(far (0 fx)), Eq. (5.8) can be used to obtain
the subset of azimuthally symmetric solutions in velocity space (J fi), which are decoupled
from the azimuthally asymmetric solutions 8 f ;. = & fi — (5 fx).

Following Chapter 2, we solve the linearized kinetic equation, Eq. (5.9), at arbitrary colli-
sionalities by expanding the perturbed distribution function (6 fi) into an orthogonal Hermite-
Laguerre polynomial, similar to Eq. (2.50), that is

00 pJj
b fi) = —
‘ pJZ=0 v2rp!

With respect non-linearized Hermite-Laguerre expansion considered in Chapter 2, we note

H, ) L; (v7). (5.10)
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that the expansion in Eq. (5.10) for the linearized distribution function considers an isotropic
background temperature Ty, = T . = Ty and vanishing fluid velocity. Due to the orthogonality
of the Hermite-Laguerre basis, the coefficients NP/ of the expansion in Eq. (5.10) can be
computed via the expression

Hyw )L (03) (6 fi) ek

N

By projecting the Boltzmann equation, Eq. (5.9), onto a Hermite-Laguerre basis, a moment-

NPJ = v dv?. (5.11)

hierarchy for the coefficients N”/ is obtained
0 . +1 NOO 1) .
i— NP = p P Npetig NP 1 N2 0pa0i0 s oni, (5.12)
V2

with CP/ the projection of the linearized collision operator onto a Hermite-Laguerre basis

col —f Hp(v2)Lj(v5) (C(fumd fi)

duzdvi. (5.13)

In Chapter 2, the Coulomb collisional moments CP/ were derived leveraging the non-linear
formulation of Ji & Held (2009), further expanded to the gyrokinetic regime in Chapter 3. While
alinearisation of the nonlinear moments C?/ in Chapter 3 could be performed, in this chapter,
we restrict ourselves to the linear model of Ji & Held (2006), where the linearized collision
operator is projected onto a tensorial basis of the form P! = P!(c) L*1/2(¢?), simplifying the
numerical implementation of our model. Indeed, expanding the distribution function as
Ofa= ZLSMZS -Plsla_lg, and with O'é =DI(+s+1/2)!1/@21(I+1/2)'s"), Ji and Held showed that the
linearized collision operator can be written as

Pl(p
C(fM6f) fMZ Z (D) (Mls 15,0 Mls Obls) (5.14)
b 1,5=0 o! s
where vls O(v) and VO ls(v) are linear combinations of the error function and its derivatives

[for thelr expression, see Ji & Held (2006)], and represent the test-particle and field-particle
(back-reaction) parts of the linearized collision operator, respectively. We remark that a similar
expansion in Legendre-Associated Laguerre polynomials was used in Brantov et al. (2012) in
order to derive a simplified dispersion relation applicable to the study of EPW, ion-acoustic
waves, and entropy modes.

In order to evaluate CP/, we Fourier transform in space and average the operator C(fy0 f)
in Eq. (5.14) according to Eq. (5.7), using the averaging identity in Eq. (2.77), yielding

(C(fudfi)) = Z Z (CH0+ o), (5.15)
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15,0 .

where C,," is the averaged test-particle operator

I 2
lsO 15,0 152 ()
= furv’s (u)P,( 2) TR (5.16)

and CS; % the field-particle (back-reaction) operator

n2
Ols fvolfs(V)P( )Mls2(l)

AT (5.17)

with the fluid moments M }lf = ,/Vbls defined by Eq. (2.84). We note that, while an expansion in
tensorial Hermite polynomials P! (c) allows us to conveniently express the linearized collision
operator in terms of Mll]s moments, the basis transformation of Eq. (2.81) is needed to cast the
velocity dependence of (C(f/0 fi)) in a Hermite-Laguerre polynomial basis more appropriate
to model magnetized plasma dynamics, and to calculate its velocity moments.

We now use the expression of (C(fas0 fi)) contained in Eq. (5.15) and inject it in Eq. (5.11).
By defining the fluid moments Aé Zs as

Alls = f v L2 (0% fuvi 0 (), (5.18)
and B! as
Bégs_fulﬁt*”z(uz)f VOB wdv, (5.19)

the resulting collision operator moments C”/ can be written as

oo p+2jj+lpi2l (T~ 1)”2 (In?

CEEDDIDY -

b s=0 [=0 (=0 (2[)!0'3\/2pp! 21+1)

(Ml alts + MisBLE). (5.20)

The analytical expressions for Ai ’;j and B é ZS suitable for numerical implementation are given in
Ji & Held (2006). The moments of the collision operator, C”/, correspond to the ones derived in
Jorge et al. (2018) and used in Chapter 6 for the study of drift-waves, and can also be obtained
by linearizing the electron collisional moments presented in Chapter 2.

Besides the Coulomb collision operator, the Hermite-Laguerre expansion described above
can be advantageously applied to describe other collision operators. We consider here the
Lenard-Bernstein (Lenard & Bernstein, 1958), the Dougherty (Dougherty, 1964), and the
electron-ion collision operators that are used for comparison with the full Coulomb one. The
Lenard-Bernstein and Dougherty operators are implemented in a number of advanced kinetic
codes (Nakata et al., 2016; Grandgirard et al., 2016; Pan et al., 2018), and are frequently used
to introduce collisional effects in weakly collisional plasmas (Zocco & Schekochihin, 2011;
Zocco et al., 2015; Shi et al., 2017; Mandell et al., 2018). Therefore, a comparison between the
Coulomb and the Lenard-Bernstein and Dougherty operators, even in simplified systems such
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as the case of EPW, is important to determine the accuracy and validity of these operators. The
Lenard-Bernstein collision operator C;p(f) is of the Fokker-Planck type. It conserves particle
number and satisfies the H-theorem, and it can be written as (Lenard & Bernstein, 1958)

haf)

p (5.21)

Crp(f) = ( vf+ 9
This operator can be derived from the Fokker-Planck equation, Eq. (5.2), by assuming (m/my)0y Hp =
vand 0y0yGp = -1 U?h /2 with I the identity matrix. By projecting the Lenard-Bernstein operator
onto a Hermite-Laguerre basis according to Eq. (5.13), one obtains

Cl = —v(p+2j)NPI. (5.22)

In Eq. (5.22), we have defined the normalized frequency v as the electron-ion collision fre-
quency normalized to kv;y,, namely v = v;/(kv;). Equation (5.22) can then be used in the
moment-hierarchy equation Eq. (5.12), yielding

i%N”j = p+ £ nprlig \/71\71” U4 ”'\1/(;’ 0 ivp+2j)NPI. (5.23)
The linearized Dougherty collision operator Cp(f), on the other hand, adds the necessary
field-particle collisional terms to the Lenard-Bernstein operator in order to provide mo-
mentum and energy conservation properties. Namely, it sets (m/my)0yH, = v—u, with
u= fvfdvzdvid(p/no, and 0y0yGp = —IT/m, with T = fm(v—u)zfdvzdvid(p/(?)no) =
(vV2N?° —2N°)/3. The Hermite-Laguerre moments of the linearized Dougherty collision
operator ng are given by

Cll = =v|(p+2J)NPT = N'°5,18 jo + T(V28,506 j1 — 26 a8 o), (5.24)

yielding the moment-hierarchy equation

/ 00 .
lin] — p_HNp+lj + BNp_lj + N 5p,15],0
ot 2 2 ap V2

= v [(p+2J)NPT = N'6 180 + T(V28 06 j1 ~ 26 28 jo) | (5.25)

We note that the moment-hierarchies with the Lenard-Bernstein or the Dougherty collision
operator, Eq. (5.23) and Eq. (5.25), respectively, do not couple different Laguerre moments and,
therefore, one can focus on obtaining the coefficients N”° for solving the moment-hierarchy.

The Hermite-Laguerre expansion procedure can also be applied to the electron-ion opera-

tor Ce; () that is often used for EPW studies (Epperlein et al., 1992; Banks et al., 2016), that is

e Y 910 _20f
Cel(f)—2v3aé[(1 6)65 , (5.26)
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with £ = v,/ v. This operator describes the pitch-angle scattering of electrons due to collisions
with ions. By projecting Eq. (5.26) into a Hermite-Laguerre basis, Eq. (2.93) is obtained.

As an aside, we note that previous studies on EPW have shown that the solutions of the
linearized Boltzmann equation are, in fact, sensitive to the discretization method used. For
example, it was shown that finite-difference methods, when applied to the problem of EPW,
produce a number of numerical, non-physical modes with a rather small damping rate that
do not lie in the vicinity of the collisionless solutions, even for weak collisionalities and a very
high resolution (Bratanov et al., 2013). On the other hand, a discretization scheme based
on a Hermite-Laguerre polynomial decomposition yields a large number of roots that lie in
the vicinity of the collisionless solution. Since previous EPW studies using the electron-ion
collision operator have been performed using a discretization of the distribution function into
a set of Legendre polynomials, i.e., (Epperlein et al., 1992; Brantov et al., 2012; Banks et al.,
2016)

o0
@iy =3 aw)Pi(Q), (5.27)
1=0
as a test of our approach, we compare in Section 5.5 our results with the Legendre decom-
position in Eq. (5.27). By projecting the Boltzmann equation, Eq. (5.9), with an electron-ion
collision operator into a Legendre basis, Eq. (5.27), the following moment-hierarchy equation
is obtained
id al(v) _ l

+1 0 iv
— —zl_lal_l(v)+21+3al+1(v)+a—;fva2a0(v)dv—Fl(l+1)al. (5.28)

A relation between the Hermite-Laguerre N”/ and Legendre moments a; can be found by
comparing Egs. (5.10) and (5.27), yielding

x & PRI 1 NPJ 1/2,.2
aw) =y Y Y. (T —==v"L{"2 ()55, (5.29)

p=0;j=0 s=0 t=0 AV 2pp!

and
_ pH2jj+lpr2] (T—l);jj
NPI= Y f as(v L2 (v dw. (5.30)

s=0 1;) V2Ppl2I+1)

5.2 Collisionless Dispersion Relation

As afirst step in the analysis of EPW, and for comparison with the results in the presence of
collisions, we derive the EPW dispersion relation in the collisionless limit. We first Fourier
transform in time the collisionless limit of the moment-hierarchy equation, Eq. (5.12), by
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imposing 8 fi ~ e+ obtaining

R +1 . . N005 0
ity +iw)NPI = /B2 npti g [P p-1y 2 TP1EI0 (5.31)
2 2 ap 2

A closed form solution of the collisionless moment-hierarchy in Eq. (5.31) can be obtained by
dividing the Boltzmann equation, Eq. (5.9), by the resonant iy — v, factor, multiplying the ob-
tained equation by the Hermite-Laguerre polynomial basis functions and, finally, integrating
over velocity space. This yields

00

NP = _NT
ap

-1P

—i(y+iw) (

75 ZP (w—iy)+ 5,,,0] 80 (5.32)

where ZP) is the pth derivative of the plasma dispersion function Z©, defined by

(=1)P [ Hp(x)e™
P (1) = p
ZF (u) N D dx. (5.33)

We note that the solution in Eq. (5.32) is similar to the one in Kanekar ez al. (2015) when applied

to the EPW case. By setting (p, j) = (0,0) in Eq. (5.32), the collisionless dispersion relation is
found

D=14+ap-i(ly+iw)Z(w-iy)=0. (5.34)

Alternatively, Eq. (5.34) can be derived from the collisionless limit of the Boltzmann equation,
Eq. (5.9), upon division by the factor iy — w — v, and integration with respect to v;.

The numerical solution of Eq. (5.34) is shown in Fig. 5.1. This is obtained by discretizing y
and w into a two-dimensional [w, y] grid, evaluating D on the grid, and storing the values where
[Re(D), Im(D)] vanishes. To evaluate Z, we make use of the identity Z(x) = i\/ﬁe‘x2 erfc(—ix)
with erfc(x) = 1 —erf(x) and erf(x) the error function, and use the algorithm developed in
Gautschi (1970) to numerically compute erf(x) for complex arguments.

The ap dependence of the least damped solution of Eq. (5.34) is shown in Fig. 5.2, where
both its damping rate y and frequency w are seen to be monotonic functions of ap, which
is in agreement with previous EPW studies (Banks et al., 2017). In the following, without
loss of generality and similarly to previous studies of collisional damping of EPW (Banks
et al., 2016, 2017), we select the value of ap = 0.09 when fixed ap studies are performed,
which corresponds to kAp = y/ap = 0.3. While this value of ap is typical for EPW driven by
stimulated Raman scattering (Brunner & Valeo, 2004; Winjum et al., 2013), we add that the
particular choice of ap has no quantitative impact on the conclusions we draw.
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Figure 5.1: Spectrum of solutions of the collisionless dispersion relation D = 0, Eq. (5.34), for
ap = 0.09. The blue dots show the roots of the real part of D, i.e., Re[D(w + iy)] = 0, the black
circles the roots of the imaginary part of D, i.e., Im[D(w + iy)] = 0, and the red squares the
intersection of the two sets of roots. The damping rate y and frequency w are shown in the
vertical and horizontal axis, respectively.
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Figure 5.2: Collisionless frequency (blue line) and damping rate (red line) of the least damped
solution of the collisionless dispersion relation, Eq. (5.34), as a function of ap, for 0.05 < ap <
0.4.
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Figure 5.3: Time evolution of the absolute value of N using a truncation with (P, J) = (18,2),
evaluated using the full linearized Coulomb collision operator. Different values of v and ap
are shown.

5.3 Temporal Evolution of Electron-Plasma Waves

In this section, the moment-hierarchy equation, Eq. (5.12), is solved numerically as a time-
evolution problem. For the numerical solution, the moment-hierarchy is truncated at a
maximum Hermite-Laguerre index (B, J) by setting

NPJ =0, for (p, j) > (B]). (5.35)

We consider as initial condition N?J (¢t = 0) = § pO(S jo, such that the perturbed density and
electrostatic potential are initially excited, while higher moments of the distribution function
are set to zero. The temporal evolution of N (and therefore of ¢) is shown in Fig. 5.3 for
different collisionalities and ap values. In this section, we focus on the oscillating initial
phase of Fig. 5.3, where the EPW dominate the dynamics. We fit the amplitude of N° to an
exponentially damped sinusoidal wave with real frequency w and damping rate vy, taking into
account a minimum of three oscillation periods. The later phase, where a purely damped
behavior is observed at higher collisionalities due to the presence of an entropy mode, is
investigated in Section 5.4.

A convergence study with the truncation indices (B, J) is shown in Fig. 5.4. Convergence is
observed for (B, J) = (18,2) in the range of collisionalities and ap investigated (a variation of
less than 3% is observed between damping rates evaluated with a truncation at (B J) = (18,2)
and a truncation at higher values of P and J).

The values of oscillation frequency w(a p, v) and damping rate y(a p, v) obtained as a fit
of the initial damping phase are shown in Fig. 5.5 for 0.075 < ap < 0.2 and 0.015 < v < 0.7
using the Coulomb collision operator, where a truncation at (B, J) = (18,2) is used. The largest
deviation of the damping rate from the collisionless case is seen to occur for large values of
collisionality and small ap. This is expected, as for large y and small ap the collisional fluid
limit is retrieved. The dependence on ap may be attributed to the decreasing magnitude of
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Figure 5.4: Comparison of the normalized damping rate y for @ p = 0.09 as a function of the
normalized collision frequency considering a truncation at different values of (B, J) (solid
lines) and using the full linearized Coulomb collision operator. The collisionless least damped
Landau solution is shown for comparison (dashed blue line). All frequencies are normalized
to kvyy,.
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Figure 5.5: Damping rate y (left) and oscillation frequency w (right) of the electron-plasma
wave obtained from the moment-hierarchy equation, Eq. (5.12), as a function of ap and v for
(B J) = (18,2). The full linearized Coulomb collision operator is considered.

the Landau damping rate for decreasing ap (see Fig. 5.2). This makes the ratio between the
collisional and the collisionless damping rates increasingly larger. Finally, we remark that the
presence of several competing eigenmodes in the initial transients of the temporal evolution
of N contribute to the presence of a transition at a.p ~ 0.1 visible in Fig. 5.5.

A comparison of the collisional component of the damping rate y.,;;, obtained with
different collision models, is shown in Fig. 5.6, where v 11 =Y — Ycollisioniess With v the total
damping rate and Y oi1isionless the collisionless Landau damping. Results considering Lenard-
Bernstein, Dougherty, electron-ion, and the full Coulomb collision operators are shown. We
note that when the Lenard-Bernstein and the Dougherty operator are considered, only self-
collisions are taken into account, and with the electron-ion operator only unlike-particle
collisions are included. In general, the Coulomb operator yields a damping rate smaller than
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Figure 5.6: Difference between the collisionless damping rate y with the one resulting from the
moment-hierarchy equation, Eq. (5.12), with the full Coulomb, Lenard-Bernstein, Dougherty,
and electron-ion collision operators at ap = 0.09 and (B, J) = (18,2). The collisional damping
rate ¥ riyiq = —0.266v obtained from a fluid description is also shown for comparison.

the Lenard-Bernstein and larger than the Dougherty one, with deviations of up to 50% between
different operators. The use of an electron-ion collision operator is preferable since it yields
damping rates and frequencies similar, just slightly lower, than the Coulomb operator. The
collisional damping rate, y f;uiq = —0.532v/2, obtained from a fluid description using the
Braginskii equations (Banks et al., 2017), is also shown for comparison. We remark that the
results in Fig. 5.6 for the collisional component of the damping rate of the fluid, purely e-i
collisions, and the full Coulomb operator are in close agreement with the findings of Banks
etal. (2017).

For v « 1, it is seen that the damping rates of all solutions approach the collisionless limit
regardless of the collision operator used. When v is increased, Fig. 5.6 shows that the differ-
ences between the collision operators still persist. This allows us to draw arguments for the
difference between the different collision operators by using a low number of moments. The
lowest order particle conservation C% = 0 and collisional friction C'° = —vN'® moments CP/
are the same between the Coulomb, Lenard-Bernstein, and electron-ion collision operators,
while the Dougherty operator has C})O = 0. This effectively reduces the damping rate evaluated
with the Dougherty operator with respect to the Coulomb case, as seen in Fig. 5.6.

On the other hand, only the Coulomb, the Dougherty, and the electron-ion collision
operators are energy conserving, i.e., satisfying (1/2) f m(v§ + vi)C (f)dv =0 or, equivalently,
C%0 = /2C%, while the Lenard-Bernstein operator does not conserve energy. In fact, the
energy moments are given by CY, = —v2N% and C7%, = —v2N?, yielding C)} = C*,. However,
despite the additional conservation properties, the agreement of the Dougherty operator
is rather poor, as seen in Fig. 5.6. We conclude therefore that the presence of additional
momentum and energy conserving terms in the Dougherty operator with respect to the
Lenard-Bernstein operator does not yield a damping rate closer to the Coulomb one. This
was also pointed out in Jorge et al. (2018), where a similar framework was used to derive the
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Figure 5.7: Time evolution of the absolute value of N° with v = 5 and ap = 0.01. Left:
convergence study with a full Coulomb operator and (B, J) = (18,0) (green), (B, J) = (18,2) (red),
and (P, J) = (18,4) (blue). The time evolution of N° with v = 3.5 and (P, J) = (18,4) is also
shown for comparison (black). Right: truncation at (B J) = (18,2) using the full Coulomb
collision operator (red), electron-ion collisions only (green), the Lenard-Bernstein (orange)
and the Dougherty (blue) collision operators.

growth rate of the drift-wave instability.

5.4 Entropy Mode

We focus on the latter stage of the time evolution of N shown in Figs. 5.3 and 5.7, where
a purely damped behavior is found at high collisionalities. In order to enhance the role of
the zero-frequency mode, we consider the collision frequency v = 5, while decreasing the
role of Landau damping by setting @p = 0.01 (the purely damped mode is not affected by
the value of ap, if ap <« 1). Indeed, the transition to a purely damped behaviour is seen to
occur at times that decrease with the collision frequency [see Fig. 5.7 (black)]. The resulting
time traces of |[N°| using a full Coulomb collision operator are shown in Fig. 5.7 (left) for
(B)) =(18,0), (B)) = (18,2), and (B J) = (18,4), while time traces using the full Coulomb,
electron-ion, Lenard-Bernstein and the Dougherty collision operators with (B, J) = (18,2) are
shown in Fig. 5.7 (right). We observe that for the Coulomb and electron-ion case, there is
a transition to a purely damped mode at ¢ = 7 only when perpendicular velocity dynamics
is introduced, J = 2. At the same time, while for the Coulomb operator, the purely damped
mode that sets the late time evolution of the system in Fig. 5.7 has a damping rate y = —0.202,
the electron-ion collision operator yields a damping rate one order of magnitude smaller,
Y = —0.024. This purely damped decay is not present when the Lenard-Bernstein or the
Dougherty operators are considered. We therefore conclude that in order to obtain the correct
long-term behaviour of the Boltzmann equation, Coulomb self-collisions must be included in
the description.

The long term behaviour observed in Fig. 5.7 is due to the presence of the entropy mode
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(Banks et al., 2016). An analytical framework to model the entropy mode can be derived by
noting that this is a purely damped mode with a damping rate much smaller than both the
plasma and the collision frequencies. Previous studies on the collisional damping of EPW
show that such a mode results from the effect of pitch-angle scattering at high collisionality
(Banks et al, 2016). Considering that in the high collisionality limit only the lowest order
terms in the expansion of (6 fx) in Eq. (5.10) play a role and that, according to Fig. 5.7, a
finite perpendicular velocity-space resolution is an essential element for the entropy mode,
we consider in the moment-hierarchy equation, Eq. (5.12), the six lowest order Hermite-
Laguerre expansion coefficients, namely N%, N1, N20 N30 NO1 and N!! with the ordering
N30~ N1~ eN?0 ~ e NO ~ ¢¢p, with € the small expansion parameter
1

2y 5.36
€~ o~y (5.36)

so that the particle mean-free path A, r, = v¢1,/ve; is small compared with typical wavelengths
of the perturbed quantities, i.e., kA, fp <L Higher order moments are considered to be
0(62(/)). Charge neutrality is kept up to second order, i.e.,

ap ~ €. (5.37)

Using Poisson’s equation, we find that density perturbations N° are negligible when compared
with electrostatic fluctuations, namely

NOO

® =—-ap<xl. (5.38)

The moment-hierarchy equation, Eq. (5.12), at (p, j) = (0,0), shows that N9/ N ~ y. Together
with the estimate in Eq. (5.38), this yields

NlO
7 ~Yap < 1 (539)

Using the moment-hierarchy equation Eq. (5.12) and neglecting second order terms in the
parallel (p, j) = (2,0) and perpendicular (p, j) = (0, 1) temperature equations, we find that

3
iyN* =~ \/;NE‘O —iv(0.45N° +0.64N?%), (5.40)
and
Nll
iyNO = 7 iv(0.32N°! +0.45N2%), (5.41)

respectively. The same procedure in the (p, j) = (3,0) and (p, j) = (1,1) moment equations
yields

3
0= \/;Nz" —iv(0.15N +1.03N30), (5.42)

97



Chapter 5. Linear Theory of Electron-Plasma Waves at Arbitrary Collisionality

and

01
0=~ 75 iv(1.09N +0.15N39), (5.43)

respectively.

As a consequence, the truncated moment-hierarchy equations, Egs. (5.40)-(5.43), yield
the following dispersion relation

) 1 0.69 5
¥P+ 196y | = +0.49v |+ == +1.4x 107" +0.88 =0 (5.44)

that up to second order in € yields the solutions y = —0.96v—1.04/v and y = —0.92/v. The least
damped solution,which is the one consistent with the ordering y ~ 1/v in Eq. (5.36), when
applied to the v = 5 case of Fig. 5.7, leads to y = —0.18, which has a relative difference of 11%
with respect to the y = —0.202 value obtained numerically.

We note that, with the same ordering above, a purely damped solution can also be obtained
from the one-dimensional linearized Braginskii equations (Braginskii, 1965). In this limit, in
fact, the following linearized electron temperature equation is found

30T,

e ~
nos =+ Ve (-2 VaTe) 0 (5.45)
where Xﬁ =3.2n9 T,/ (m.vkv,y), with the Joule heating term proportional to m,./m; neglected.
Equation (5.45) yields the electron Braginskii entropy mode y = —1.1/v, a value that is close to

the estimate above based on the truncated moment-hierarchy equation.

Finally, we remark that a purely damped mode is only observed in the temporal evolution
of N% for values of v > 1, while for v < 1 a transition from damped oscillations to a purely
damped behaviour is not seen to occur for the range of values of ap considered here even at
later times. The value of v where a transition from collisional Landau damping to a purely
damped entropy mode occurs after an initial transient is visible in the time evolution of N
can be estimated by balancing the damping rate of the collisional damping of EPW with the
damping rate of entropy modes. Estimating the former as y = —0.03 — 0.26v from Fig. 5.6, and
the latter as y = —0.92/v, the collision frequency at which the transition occurs is therefore
estimated to be v = 1.8, in agreement with the numerical results.

5.5 Eigenvalue Spectrum

We now compute the eigenmode spectra of EPW, and highlight the differences between the
spectra of the full Coulomb, electron-ion, and Lenard-Bernstein operators using a Hermite-
Laguerre decomposition, and the electron-ion operator using a Legendre polynomial decom-
position. We note that both the Lenard-Bernstein and the Dougherty collision operators are
seen to yield similar eigenmode spectra. Therefore, we do not consider the Dougherty operator
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for this analysis. To compute the Hermite-Laguerre EPW eigenmode spectrum, the moment-
hierarchy equation, Eq. (5.12), is truncated at a maximum index (P, J), Fourier transformed
in time, and the resulting eigenvalue problem solved numerically, yielding the Van-Kampen
spectrum of solutions at arbitrary collisionality. In matrix form, this yields

AN = (w+iy)N, (5.46)

where N = [NOONO! | NO/NIONIL | NPJ s the moment vector and A the (P+1)(J+1) x (P +
1)(J + 1) matrix of moment-hierarchy coefficients of elements A}’ with m and n the row and
column, respectively

pr+j _ |p+1 p 0p10;00p0070 . pr+j
Apr]+j/— > 6P+1’p’6j,j’+ Eép_lyp/éj,jr+ \/z a0 +1Cp,]+j,, (5.47)

which can be written in matrix form as

0 0 o 1V2 0
0 icd ... ic% 1/v2+ic!
A= . . . . 5.48
A+1l/ap)/v2  iC ... iCy iCcl? 48
0 W2+Cll ... iCl icll

In Egs. (5.47) and (5.48), we have defined the collisional coefficients Cftj in terms of the
collisional moments CPJ as CPJ = Zp,,j/ Cl':,]j,Np'j' and CZ,]]:JJ., = CZ,]].,. The spectrum of y and
w is then found by computing the eigenvalues of the matrix A.

The resulting eigenvalue spectrum for the Coulomb collision case is shown in Fig. 5.8 for
v=0.1 (a) and v =1 (b), with ap = 0.09 and (B, ]) = (18,2), together with the corresponding
collisionless Landau root (red marker), i.e., the least damped solution of Eq. (5.34). The
resulting collisional spectrum is discrete, contrary to the continuous collisionless Van-Kampen
spectrum, as noted in previous studies of weakly collisional plasma systems (Ng et al., 1999;
Bratanov et al., 2013). Figure 5.8 shows that the damping rate of the Coulomb eigenmodes
decreases with the corresponding frequency, which is possibly related to the fact that the
collisional drag force decreases with the particle velocity in the Coulomb collision operator.
We also note that the least damped Coulomb eigenvalue in Fig. 5.8 is not the one closest to the
Landau collisionless solution, as there are modes with higher oscillation frequency w that are
less damped than the collisionless damping rate. These eigenvalue solutions, however, are
related to eigenvectors that mainly involve moments N/ with large values of p and j, and
have therefore a negligible contribution to the initial damping of N° and ¢.

Finally, the Coulomb eigenmode spectrum in Fig. 5.8 includes modes with vanishing
frequency and damping that increases with v. These modes correspond therefore to purely
damped modes with a damping rate that at low collisionalities can be comparable to the
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collisionless Landau one. These zero-frequency solutions have also been previously observed
in the analysis of linear EPW when pitch-angle scattering effects are included (Eppetrlein et al.,
1992; Banks et al., 2016), and correspond to the entropy mode studied in Section 5.4.

As an aside, we note that when the moment-hierarchy equation, Eq. (5.12), is truncated at a
higher P, i.e., using a higher number of Hermite polynomials, the number of eigenmodes with
high frequency and small damping rate increases. On the other hand, when the number of
Laguerre polynomials, hence J, is increased, the eigenmode spectrum present and increasing
number of modes with similar frequencies but increasingly higher damping rates. However,
as shown by Fig. 5.4, the damping rates y closest to the collisionless solution have negligible
variation when P and J are increased (for P = 18 and J = 0 the variation is smaller than 3%).

The eigenmode spectra using a Lenard-Bernstein collision operator are also shown in
Fig. 5.8 for v=0.1 (c) and v =1 (d), with ap = 0.09 and (P, J) = (18,2). A clear difference is seen
between the eigenmode spectra of the Coulomb and Lenard-Bernstein operators. Contrary
to the Coulomb case, the damping rate of the EPW modes increases with the frequency w
when a Lenard-Bernstein collision operator is used. Also, contrary to the Coulomb case, the
Lenard-Bernstein root closest to the Landau collisionless root is the least damped one, as also
noted in previous weakly-collisional studies of EPW (Bratanov et al., 2013).

Finally, the eigenvalue spectrum using the electron-ion Coulomb operator introduced in
Eq. (5.26) is shown in Fig. 5.8 for v = 0.1 (e) and v =1 (f). The spectrum is qualitatively similar
to the Coulomb one, with high frequency modes being less damped than modes with smaller
oscillation frequency. As for the Coulomb collision operator, such frequency dependence may
be due to the dependence of the drag force on the particle velocity. Indeed, the electron-ion
collision operator contains a drag force that decreases with the particle velocity, similarly to
the Coulomb operator.

We now estimate the frequency w of the modes in Fig. 5.8 with a damping rate y different
than the ones closest to the collisionless roots, by noting that the values of w in Fig. 5.8 are seen
to be weakly dependent on v, @ p, and the collision operator for the range of values used. We
therefore solve the moment-hierarchy equation, Eq. (5.12), in the ¢ = 0 limit, which effectively
neglects the roots related to EPW. Furthermore, in order to retrieve purely oscillatory solutions,
the collisional damping terms CP/ in Eq. (5.12) are neglected. The time Fourier-transformed
moment-hierarchy equation in the ¢ = CP/ = 0 limit reads

NP =[P i [P i (5.49)
2 2
We recognize in Eq. (5.49) the recursion relation for the Hermite polynomials

(5.50)

100



5.5. Eigenvalue Spectrum

a) %ts. % HKogs
L o ® o o ® B
[ ] ° °
1 L] [ 4 [ Y °
_ L4 []
02 g ¢ .Oo ° oo. °
e © g0 o
< 1 [} [}
-0.4
1 Coulomb
ool S
1 °
_06 -
0
w
0 \ . , | , . .
c) kS *
_02 -
|
Collisionless L
-0.4 o2 20w o e 0,
e ° H (] ceve. ° R °
-0.6 e o° e o
] K e ° «°°
-0.8 4 oo
. o
14 ‘
-5 0
w
0 ‘ _
e) PRI Fe sl
] o ' % e ® °
-0.1 4 o o ®
1 ® O °® ®
i e oo o
i °
e -02 ] ° °
® e-iCoulomb|
-0.3 %K Collisionless | -
° ° [
-0.4 1 °
0 5
w

T e [ ]
°® ° %ii s ®
o o ° . L)
°® o . e, L
° °
° [ L
® Coulomb
e o Collisionless
[
°
* -
0 5
w
NN VA L AN
) «
° L
{ ] [ - L
° ® |enard-Bernstein| |
° ° Collisionless r
o 8§ o [
° e °
° °
* . ® o [
° ° ° e« °® L
° ° F
°
° ¢« ° [
o © [
L c;
T L T T T
2 0 2 4
w
4 \ | ' I
S W ¢ % t e o ©
e o %o o ®
° [ ]
. ° r
L] [
L ® e-i Coulomb
% Collisionless | [
i L
* T
0 5
w

Figure 5.8: Complete eigenvalue spectrum of the truncated moment-hierarchy equation
with ap = 0.09 and (B ]) = (18,2) [yielding (P + 1)(J + 1) = 57 eigenvalues], using the full
Coulomb collision operator (top), the Lenard-Bernstein operator (middle), and the electron-
ion Coulomb operator only (bottom), with v = 0.1 (left) and v = 1 (right). The collisionless
least damped solution is shown as a red marker, and the red vertical lines are the solutions of

Eq. (5.51).
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The roots w can be found by applying the truncation condition in Eq. (5.35) to the solution
in Eq. (5.50), yielding

Hp1 () =0. (5.51)

The solutions w in Eq. (5.51) are purely real, yielding frequencies that closely follow the ones
observed in the eigenvalue spectra (red vertical lines in Fig. 5.8).

Finally, we present two tests to assess the validity of the results in Fig. 5.8, first for the
Lenard-Bernstein case and then for the electron-ion case. Focusing on the Lenard-Bernstein
spectrum, we derive a polynomial in y whose roots closely follow the modes in Fig. 5.8 (c) and
(d) that appear with damping rates larger than the ones of the two least damped roots. Fourier
transforming the Boltzmann equation, Eq. (5.9), in time and in velocity-space similarly to
Ng et al. (2004), with C(f) the Lenard-Bernstein collision operator, the following differential
equation for g(s) = [ exp(isv; —yt+iwt) fud frdv.dt is obtained
dg) __ VA

—s—e_%g(O). (5.52)

g(s) (y+ o+ st) +(1+vs)
2 ds 2ap

We solve Eq. (5.52) neglecting the coupling with the electrostatic potential ¢ by setting
(ap) !« 1 (or, equivalently, setting ¢ = 0 in the Boltzmann equation), and define A = v72/2
and I' = V2A(y + iw) — A, yielding

_ sy\F —%+S/1
g(s)—g(O)(lJrﬁ) e . (5.53)

Similarly, Fourier transforming the Hermite-Laguerre expansion of (0 fi) in velocity-space, we

obtain
x jpNPO 2
g)=) ————sPe 7 (5.54)
pX::o V/ 2P+ pl
Equating the two expressions above, we find
2p+l gp s
NP0 = N9 (—j)P —— et 1+ ) ] . (5.55)
p! dsP 2A7 [ soo

Therefore, the truncation condition in Eq. (5.35) in the ¢ = 0 limit is equivalent to imposing

et (1 + %)F

dP

- —0. (5.56)

s=0

Finally, we can rewrite Eq. (5.56) as a polynomial iny + iw

P
Y apiM)(y+iw) =0, (5.57)
=0
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Figure 5.9: Blue dots: roots of the polynomial in Eq. (5.57), which corresponds to the solution
of the Boltzmann equation with a Lenard-Bernstein collision operator where the distribution
function is approximated by a truncated Hermite expansion, for A = 50 (left) and A = 0.5
(right) (corresponding to v = 0.1 and 1, respectively) at P = 20. Red vertical lines: solutions of
Eq. (5.51).

with
pt = all ¢ s\n, ’ .
I=tn=I

where s(n, [) are the Stirling numbers of the first kind (Moser & Wyman, 1958; Qi, 2014). As
shown in Fig. 5.9, the polynomial expression in Eq. (5.57) closely reproduces the eigenvalue
spectrum observed in Fig. 5.8 (c) and (d). Therefore, although the coupling of the electron
distribution function with ¢ is crucial to reproduce the EPW roots, additional modes in the
eigenmode spectrum are related to solutions decoupled from the electrostatic potential ¢,
subject to the truncation condition of the Hermite-Laguerre series, Eq. (5.35), with frequencies
similar to the ones of Eq. (5.51).

As a second test, to assess the validity of the eigenmode spectrum found with an electron-
ion collision operator in Fig. 5.8, we solve the Boltzmann equation using a different set of
basis functions, namely expanding (J f;) in Legendre polynomials, Eq. (5.28), and solving the
resulting moment-hierarchy equation, Eq. (5.28), numerically. In this case, the expansion of
(6 f¥) in Eq. (5.27) is truncated at /,,4 = L by setting a;.; = 0. The velocity v is discretized over
an interval [0, vmax] with an equidistant mesh made of n, points, and the integral estimated
with a composite trapezoidal rule. The resulting spectrum is shown in Fig. 5.10. When
compared with the Hermite-Laguerre spectrum in Fig. 5.8 (e) and (f), the two spectra look
qualitatively similar, confirming the validity of the Hermite-Laguerre approach. However,
a higher number of small-damped low-frequency solutions is observed when a Legendre
decomposition is used. The appearance of small-damped non-physical eigenmodes when
using a finite-difference discretization in v was also noted by Bratanov et al. (2013), leading
to the conclusion that, in general, a Hermite discretization of the distribution function is in
fact superior to a finite difference one. Furthermore, for the values of v = 0.02 and ap = 0.09
where the Hermite-Laguerre formulation with (P + 1)(J + 1) = 19 x 3 = 57 polynomials is seen
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Figure 5.10: Eigenvalue spectrum of the truncated moment-hierarchy equation using an
electron-ion Coulomb collision operator for v = 0.1 (left) and v = 1.0 (right) with ap = 0.09,
ny =12 and L =7, with a Legendre decomposition. The collisionless solution is shown with a
red marker.

to converge to the collisionless Landau solution in Fig. 5.6 with a relative difference of ~ 16%,
when using a Legendre decomposition, a total of n,, x L = 100 equations is needed to yield a
similar accuracy on .

5.6 Conclusion

In this chapter, a first numerical study based on the model introduced in Chapter 2 is pre-
sented. In particular, the effect of linearized full Coulomb collisions on electron-plasma waves
is studied by taking into account both electron-electron and electron-ion collisions. The anal-
ysis is performed using an expansion of the distribution function and the Coulomb collision
operator in a Hermite-Laguerre polynomial basis. The proposed framework is particularly
efficient, as the number of polynomials needed in order to obtain convergence is low. Multiple
scans are performed and a comparison between several collision operators at arbitrary colli-
sionalities is presented. While the use of electron-ion collisions alone leads to a damping rate
slightly smaller than the one evaluated with the full Coulomb operator, the damping rate using
a Lenard-Bernstein or a Dougherty collision operator yields deviations up to 50% larger with
respect to the Coulomb one. An eigenmode analysis reveals major differences between the
spectrum of full Coulomb and simplified collision operators. In addition, the eigenspectrum
shows the presence of purely damped modes that correspond to the entropy mode. At high
collisionality, the entropy mode is observed to set the long time behavior of the system with
a damping rate smaller than the Landau damping of EPW. We demonstrate that the entropy
mode needs a full Coulomb collision operator for its proper description. Finally, we find an
analytical dispersion relation for the entropy mode that accurately reproduces the numerical
results.
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6 Theory of the Drift-Wave Instability at
Arbitrary Collisionality

Drift-waves (DW) are low-frequency modes that arise in a magnetized plasma when a finite
pressure gradient is present, and are driven unstable when electron adiabaticity is broken,
such as in the presence of finite resistivity, electron inertia or wave-particle resonances. Due
to the ubiquitous presence of pressure gradients and adiabaticity-breaking mechanisms in
plasmas, the DW instability plays a role in many plasma systems (Goldston & Rutherford, 1995).
Indeed, DW are known to regulate plasma transport across the magnetic field in laboratory
plasmas (Horton, 1999; Scott, 2002; Burin et al., 2005; Poli et al., 2008; Schaffner et al., 2012;
Mosetto et al., 2013), and are also thought to be relevant for the understanding of fundamental
transport processes occurring in active galactic nuclei (Saleem ez al., 2003), dense astrophysical
bodies (Wu et al., 2008), the Earth’s magnetosphere (Shukla & Bujarbarua, 1980), and dusty
plasmas (Salimullah et al., 2009). In addition, the understanding of DW is crucial since the
physics underlying a number of important plasmas instabilities, such as the electron- and
ion-temperature gradient modes, resistive modes, and ballooning modes (Stix, 1992), relies on
the same mechanisms at play in DW.

Although DW are the subject of a large number of previous studies, the effect of colli-
sionality on the linear properties of these modes remains insufficiently understood. This is
particularly worrisome since collisionality has been found to have both stabilizing (Stix, 1992)
and destabilizing effects (White, 2014) on DW. Previous studies on the DW instability at finite
collisionality have usually relied on simplified collision operators (Angus & Krasheninnikov,
2012), or on fluid models such as the Hasegawa-Wakatani (Hasegawa & Wakatani, 1983) or
the drift-reduced Braginskii model (Ricci et al., 2012), which assume that the electron and ion
collision frequencies are high enough so that the particle mean free path stays small when
compared with the mode parallel wavelength, kjA,,rp, < 1.

In the present chapter, as a second investigation of the model described in Chapter 2, we
overcome this long-standing issue and provide an efficient framework, which can be easily
extended to a large number of instabilities in magnetized plasmas, to properly study the
effect of collisionality in DW at arbitrary mean free path. Here, we focus on the case where
the DW driving mechanism is provided by the density gradient, usually referred to as the
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universal instability (Landreman et al., 2015), in a shearless slab geometry. For simplicity, we
consider the case where B is uniform. The DW growth rate that we evaluate matches both
the collisionless and fluid regimes at low and high collision frequencies, respectively, and
shows important deviations from the collisional limit already at kA, ¢, ~ 0.1. Furthermore,
at low-to-intermediate collisionality values, the regime of interest for future tokamak devices
such as ITER (Aymar et al, 2002), we show the need to retain the full Coulomb collision
operator. Indeed, the DW growth rate deviates by factors of order unity from fluid and kinetic
models based on approximate collision operators such as the Lenard-Bernstein (Lenard &
Bernstein, 1958) and the Dougherty (Dougherty, 1964) operators. These operators, by being
implemented in a number of advanced kinetic codes, are used in recent studies of DW-like
turbulence, both in the core (Hatch et al., 2013; Nakata ef al., 2016; Grandgirard et al., 2016;
Mandell et al., 2018) and at edge (Shi et al., 2017; Pan et al., 2018) regions of tokamak devices.
Since quasi-linear transport models estimate the turbulence drive by evaluating the linear
instability growth rate (Chen et al., 2000; Bourdelle et al., 2015), quantitative differences in
the growth rate have a large impact on the prediction of the level of transport, in particular
by affecting the threshold for E x B shear flow stabilization. Similarly, the linear growth rate,
together with the gradient removal hypothesis (Ricci & Rogers, 2013), is used to predict the
SOL width, a parameter crucial to the overall performance of present and future tokamak
devices such as ITER (Halpern et al., 2013b). Therefore, our results can impact ITER operation
and the design of future fusion devices.

As for the EPW, in addition to the instability growth rate, the framework we propose allows
the evaluation of the spectrum of the linear eigenmodes. The spectrum of DW collisional
eigenmodes, contrary to the collisionless case, is composed of a discrete set of roots, as first
shown in (Ng et al., 1999). Deviations between the results based on the Coulomb and both
the Lenard-Bernstein and Dougherty collision operators are particularly evident. The clear
differences question our current understanding of plasma turbulence. In fact, several DW
turbulence studies have shown that subdominant and stable modes can be nonlinearly excited
to finite amplitude (Terry et al., 2006; Hatch et al., 2011a,b; Pueschel et al., 2016) and have
a major role in nonlinear energy dissipation and turbulence saturation, affecting structure
formation, as well as heat and particle transport. The computation of such modes relies on
the correct evaluation of the eigenmode spectrum. As we show, this displays large changes
between the Coulomb and approximate collision operators.

This chapter is organized as follows. In Section 6.1, the basic mechanism behind the
dynamics of DW is described. Section 6.2 derives the moment-hierarchy formalism at arbi-
trary collisionality used to study the DW instability. In Section 6.3, the numerical results are
presented. The conclusions follow in Section 6.4. We note that the results described in the
present chapter have been published in (Jorge et al, 2018).
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6.1. Fundamental Mechanisms Determining the Drift-Wave Dynamics

6.1 Fundamental Mechanisms Determining the Drift-Wave Dynam-
ics

We consider a magnetized plasma in a straight and uniform magnetic field B along the z

direction. Only electrostatic perturbations are studied, such that B = Be, with B constant and

(ex, ey, e;) the Cartesian unit vectors. In addition, we focus on scales L larger than the Debye
length Ap =/ Ty/(4mnge?) < L, so that the plasma can be considered to be quasineutral, i.e.,

Ne=N;=MN. (6.1)

For the ion species, we consider the ion continuity equation

on
— +V-(nu;) =0, (6.2)
ot

with u; the ion fluid velocity given, in the cold ion limit, by the momentum equation

dlll'
mi—— = —eV¢+eu; xB. (6.3)

Solving Eq. (6.3) for the perpendicular ion velocity u_ ; = (b x u;) x b, and neglecting O(w/Q;)
polarization effects, we obtain the E x B drift velocity
Vo xB

u;=- B (6.4)

The equation for the ion parallel velocity u; = u; -b is obtained by projecting Eq. (6.3) along B,
yielding

m.dulli — _eVio (6.5)
i d t ” . .
For the electron species, we consider the force balance between the electron pressure gradient
and the electric field

_V(nTe)

+eV¢g =R, (6.6)

where R includes the terms that represent electron inertia and collisions with ions, and whose
expression can be found in the work of Braginskii (Braginskii, 1965). In the following, T is
assumed to be constant.

We now linearize Egs. (6.2) to (6.6) by expressing n = ny(x) + dn(y, z), where ng(x) =
nooeﬁz is the background density, 6n < ny is the fluctuating density. We assume no back-
ground electrostatic potential and no background ion velocity, thus expressing ¢ as ¢ =
6¢(y,z) and u; as u; = 6u;(y,z). By Fourier-transforming perturbed quantities, e.g., on =
f&nk(kb k||)ei‘”_ikiy_ik‘lzdk|| dk, dw, the ion continuity equation, Eq. (6.2), and parallel ion
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momentum equation, Eq. (6.5), when coupled to the E x B velocity in Eq. (6.4), yield

. . k16¢py n
zwénk—tk||no6u||,-—z J'Bd)kL—Z:

0, (6.7)
and
m;noiwduy; = eik 6y, (6.8)

respectively, while the electron force balance equation, Eq. (6.6), yields

R
%:e5¢k+l k

_ (6.9)
no Te Te kH

If collisional and inertial effects are neglected, i.e., R = 0, Eq. (6.9) shows that the electrostatic
potential is related to the electron density via

6nk N 65([)k

6.10
o T, (6.10)

The condition in Eq. (6.10) is known as Boltzmann response or electron adiabaticity condition.
Finally, using the ion continuity equation, Eq. (6.7), the ion parallel momentum equation,
Eq. (6.8), and the electron adiabaticity condition, Eq. (6.10), the following dispersion relation
is obtained

c
wz—w—skLps—kﬁcfzo. (6.11)
Ly

The kﬁ c? term points out the presence of sound waves, which propagate at phase velocity c,
along B. These waves result from the ion parallel velocity dynamics in Eq. (6.7). Neglecting
the coupling with sound waves, the dispersion relation in Eq. (6.11) yields the drift-wave
dispersion relation
Cs

=k .
w J_psLn

(6.12)
The frequency w* = kj pscs/ Ly, is the frequency of the drift-wave (also called diamagnetic
frequency), and the ratio w*/k; = csps/ Ly, is the phase velocity of the drift-wave (also called
diamagnetic velocity) .

We now analyze the DW mechanism in the presence of adiabatic electrons. In this case,
Eq. (6.10) shows that the electrostatic potential d¢p follows the density perturbations 6 n, with
a zero phase-shift (see Fig. 6.1). The electrostatic potential, in turn, creates an electric field
0Eyy = —ik1 8¢y which, according to Eq. (6.4), results in an E x B drift in the x direction, i.e.,
uy; =ik, 0¢y/Bey. As shown in Fig. 6.1, this drift has a maximum at 6n = 0 and vanishes
when 7 is at its maximum or minimum. Therefore, the E x B velocity and density fluctuations
are 90° out of phase. The motion of the plasma along the x direction, driven by the E x B
velocity, leads to the propagation of the perturbed density to the right, along the y direction,
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Figure 6.1: Propagation of drift-waves through an inhomogeneous plasma, with the back-
ground density 7y (x) is shown in blue. Perturbed density 6 n and electrostatic potential d¢p
fluctuations are considered to be sinusoidal in the y direction. Perturbations in the z direction
are not shown for simplicity. The resulting E x B velocity, vg, is shown to drive an oscillation of
the wave to the right, in the y direction, by convecting plasma with higher density to the right
of the peak of 6 1, and plasma with lower density to the left of the peak.

giving rise to the drift-wave.

We note that for finite R, a phase-shift is introduced between the electron density and
electrostatic potential, resulting in a net transport of particles. In order to accurately describe
particle transport in magnetized plasma systems at arbitrary collisionalities, we derive in the
next section a moment-hierarchy formalism for DW.

6.2 Moment-Hierarchy Model

While in the EPW case of Chapter 5, the unmagnetized electron kinetic equation was con-
sidered, here we consider the effect of a constant magnetic field and both electron and ion
distribution functions are evolved. Under the drift approximation (see Section 2.1), the frame-
work to properly treat DW at arbitrary collisionalities is provided by the drift-kinetic equation

0F, da
a7 +(vyb+vg)-VF, —V||(/)U—%l

OF,

o %(Caw, (6.13)

where F, = F,;(R, v}, 1, f) is the guiding-center distribution function of the species a (a = e, i
for electrons and ions, respectively), which depends on the guiding-center coordinate R,
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the component of the velocity parallel to the magnetic field v|, the first adiabatic invariant
w=mgy vi/ 2B with m, the mass of the species a and B the modulus of the magnetic field
B, and time ¢ (Hazeltine & Meiss, 2003). The charge q,, the electrostatic potential ¢, the
parallel and perpendicular scale lengths, v, and #, are normalized to the elementary charge
e, Toole, Ly, ps = ¢cs/Q;4, cs = /Teg/ m;, cs/ Ly, respectively, with T, a reference temperature,
L,, the background density gradient length, and Q; = eB/m;. In addition, vg = (L,/ps)b x V¢
is the dimensionless E x B velocity, o, = vmg/m;, (Cap) = 02” dOC,p/ (27) is the gyroaverage
operator with 8 the gyroangle, and the Coulomb collision operator is given by Eq. (2.32). In
this chapter, we define v,j, to be the characteristic collision frequency between species a
and b normalized to c¢s/L,. The drift-kinetic equation in Eq. (6.13) corresponds to the one
in Eq. (2.41) when B is assumed constant and higher order (1/Q,)dU/dt are neglected. The
drift-kinetic equation is coupled to Poisson’s equation, Eq. (2.132), which with a constant
magnetic field, in the quasineutral and cold-ion limit yields

Y GaNa(1+05V5 ) =0. (6.14)
a

In Eq. (6.14), we define N, = [ F,dvdud0B/(mgNp).

Similarly to Chapter 5, we linearize Eq. (6.13) by expressing F, = F,p(1 + 0 fr,) with
0 fra < 1 and F, s an isotropic Maxwellian equilibrium distribution function of constant
temperature T,o and of density Ny that varies perpendicularly to the magnetic field on the L,
scale. This yields

2 p{Cab)
FuM '

(y +iky U||)5fka= i(kl—quk” l}\|)5(/)k+ (6.15)
where C,j, is the linearized version of the collision operator in Eq. (5.2), v is the growth
rate, k) is the wave-number parallel to B, and k, is the wave-number along the direction
perpendicular to both B and the direction of VINy. As for the EPW case, in this work, we solve
Eq. (6.15) at arbitrary collisionality by expanding the distribution function into an orthogonal
Hermite-Laguerre polynomial basis, Eq. (2.50), which for T}, = T 4, = T, in normalized units

reads
T (4221, (2]
= H L:i|—], 6.16
fal pz]: ZPP! p ZTa j TaO ( )

with Hp(x) the physicists’ Hermite polynomials, L; the Laguerre polynomials, and 7, =
Tao!/ Tep. By projecting Eq. (6.15) into a Hermite-Laguerre basis, a moment-hierarchy for
the evolution of the coefficients of the expansion of d fi,, Nf ! is obtained
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. . T . _ . . k .
,}/Nl,ll)]:_lkll\/_a(vp+1N5+1]+\/ﬁNg 1])“5‘Pk(ki5p,o—ﬂap,1 Sj0+).Ch,
Oq \/ﬁﬂa b

(6.17)

with C% = [(Cap) HyLjdvydu2mcsB/ (Ngmg+/2P p!) the projection of the Coulomb collision
operator C,p, onto a Hermite-Laguerre basis. Similarly to Chapter 5, the Hermite-Laguerre
moments of the linearized collision operator CZ l]; are obtained by leveraging the work in (Ji &
Held, 2006), where C,, is projected onto a tensorial Hermite and associated Laguerre basis,
plk=p! (c)L;C“/ 2(c?). This yields the gyroaveraged collision operator moments C*/ =¥, C Z g
in Eq. (5.20). In addition, we note that, by neglecting ion dynamics and the perpendicular
wavevector k; in Eq. (6.17), we retrieve the EPW moment-hierarchy in Chapter 5.

A closed form solution for the DW moment-hierarchy can be given in the collisionless
case Cy,p, = 0 by dividing the Boltzmann equation, Eq. (6.15), by the resonant y + i kj v factor,
multiplying by the Hermite-Laguerre polynomial basis functions, and integrating over velocity
space, yielding

_qafa oak; | (=DP

Ta  kyvTa) /2Pp!

where ZP) (¢ ,) is the pth derivative of the plasma dispersion function Z(¢,) = Z ©&,), defined
by ZP) (&) = (1P (%2 Hp (X)e™ /(x—E)dx/ VT and &, = wo 4/ (kyv/2T4). Equation (6.18)
generalizes the Hermite spectrum obtained for electron-plasma waves, Eq. (5.32), and extends

NPI = ZP) (& 0) 50— ?&pk&p,ocs i (6.18)
a

Hammet-Perkins-like collisionless closures obtained for N;O and Nflo (Hammett et al., 1992)
to amoment N-/ of arbitrary order in a form ready to be used.

The Chapman-Enskog procedure with truncation of the moment-hierarchy in Eq. (6.17)
at p=3 and j =1 can be used in the high collisionality limit, kjA,, s, < 1. Neglecting sound
wave coupling and assuming cold ions, this yields the continuity equation

YN = —i(kyV -k 6¢), (6.19)

with N = N the electron density normalized to Ny, V = N2°/c, the electron parallel fluid
velocity normalized to c, the electron temperature equation

2
YT =—ikjcyV — —L (g T +0.12AT), (6.20)
v

where T = (vV2N2°-2N?%1)/3 is the electron temperature normalized to T, AT = v2N2°+ NO!
the temperature anisotropy normalized to T, and v the Spitzer resistivity normalized to ¢s/L,,
the vorticity equation

K ydpr=ikyV, (6.21)
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Figure 6.2: Growth rate of the DW instability obtained from the moment-hierarchy, Eq. (6.17),
as a function of (kj, k) and, from left to right, v.; = 0.05, 1,10, and 500, in the cold-ion limit
with o, = 0.023.

Ohm’s law
o2yV = ikj(Opr— N—crT—0.90AT) - vV, (6.22)

and temperature anisotropy variation

2
v
YAT = —12.02— AT - 2.71ik|V — 7” (0.55T +0.52AT). (6.23)
e
In Egs. (6.20) and (6.22), we have defined the coefficients (cr, cv, x|) = (1.26,1.88,0.46). When
temperature anisotropy is neglected (i.e., AT = 0), the following dispersion relation is obtained

ik? chTkzvyz
zlkﬁy__”"' I -~ =0, (6.24)
kJ_ kJ_ vy + X k”

which reduces to the drift-reduced Braginskii dispersion relation that has similar coefficients
(cv,cr, xp) = (1.14,1.71,1.07) (Zeiler et al., 1997) (we have checked that the values of the
coefficients (cr, cv, x)) approach those computed by Braginskii as the order of the closure is
increased). We also note that for resistivity driven DW (v > ym,./m;) the peak growth rate,
Y =0.12,isfound at k; =1.19and kj =1.49 V/v. If the resistivity v in Eq. (6.24) is tuned to values
lower than the ones allowed by the fluid approximation (v < ym,./m;) an electron-inertia
driven DW is obtained with a peak growth rate y = 0.29 at k; =~ 1.00 and k = 0.48v/m./m,.

At intermediate collisionality, the moment-hierarchy equation, Eq. (6.17), together with
Poisson equation have to be solved numerically. In this case, a criterion to truncate the mo-
ment expansion at a suitable order p = P and j = J can be derived by following Schekochihin
et al. (2016) where the Lenard-Bernstein operator case was considered. To derive the trun-
cation criterion, we introduce the Fourier harmonics g; = i”sgn(k))” N} /_ and insert them
in the moment-hierarchy equation, Eq. (6.17), noting that at sufficiently high index p, g,
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Figure 6.3: Comparison of the growth rate y maximized over kj and k,, as a function of
collisionality v,;, between the solution of the drift-reduced Braginskii model, the collisionless
model, the linearized moment-hierarchy using a simplified Lenard-Bernstein, Dougherty,

and the Coulomb collision operator. For the Coulomb case, truncation at different (B, ) is
considered.

can be considered continuous and differentiable in p, and therefore g,+1 =~ gp £9,8p. By
keeping only the terms proportional to N? / in the sum in Eq. (5.20), namely approximating
Cg g ~~Vapfp ]-Nf J and effectively underestimating the collisional damping contribution of
CZé, we obtain g;, = g()exp[—(4y\/ﬁ+2fpfpjp_”2)/pm]/p”4
Pca =4lk)|\/Tal (04V4i). While for the case of the Lenard-Bernstein and Dougherty operators,
since f,j = p +2j for large p and j, the solution g, = goexp[—-4(y /P + p*/?13)/ pcal/ p''* can
be obtained analytically, the coefficients f,; for the case of Coulomb collisions are found
numerically to follow approximately f},; ~ A,/p, with A~ 0.5. Such estimate yields

at the lowest order in 1/ p, with

N ip p
ij - No(j)i Sgnk”

. (6.25)
a p1/4

1
() -aat
Pya Pca

showing that the moment-hierarchy can be truncated at P = p¢, or, if kA, rpa > 2y2/ A, at
P=py,= p%a/ (16)/2) (Zocco & Schekochihin, 2011). This removes the need of ad hoc closures
for the moment-hierarchy even at low collisionalities. Regarding the truncation in j, since the
magnetic field is uniform, no perpendicular phase-mixing in Eq. (6.17) is present, and j >0
moments are present due to collisional coupling in CZ 15' Therefore, at zero collisionality, the
Jj > 0 moments vanish [see Eq. (6.18)]. At high collisionality, the Chapman-Enskog closure
shows that j > 1 moments are collisionally damped. At intermediate collisionality, numerical
tests show that only moments j < 2 impact the growth rate.
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6.3 Numerical Results

The numerical solution of the moment-hierarchy, Eq. (6.17), in the cold-ion limit with 7; = 0.01
and o, = 0.023 is shown in Fig. 6.2, where the maximum growth rate is computed over the
(ky, k1,vei) parameter space. The value of k) at the peak growth rate is seen to increase with
Vi at large value of the resistivity, as expected from the resistive fluid dispersion relation.
For small values of resistivity it converges to kj =~ 0.0074 = 0.320, a value close to the fluid
predictions for electron-inertia driven DW. The peak growth rate is observed to stay at k; =1
across all values of collisionality, as also expected from the fluid theory. By selecting the k;
and k, that yield the largest growth rate y, Fig. 6.3 shows a comparison between the peak
growth rate resulting from the fluid model, Eq. (6.24), with the Braginskii values for (cv, c7, X)),
the collisionless model, Eq. (6.18), and the moment-hierarchy using the Lenard-Bernstein,
Dougherty, and the Coulomb collision operator solving for a different number of moments.
The linearized moment-hierarchy model approaches the collisionless and the drift-reduced
Braginskii model limits, at v,; < 1 and (v,;)"! < 1 respectively. Deviations of the peak
growth rate of the moment-hierarchy from the drift-reduced Braginskii occur at values of
collisionality v,; < 10, and from the collisionless limit at v,; = 2 x 1072. This corresponds to
the range 0.1 < kA, rp S 100 (at the kj of the peak growth rate), a range that overlaps with
the regime of operation relevant for present and future tokamak machines (Pitts et al., 2011).
Deviations of up to 50% with respect to the Lenard-Bernstein and Dougherty operators arise
on both the peak growth rate and its corresponding kj and k;. We note that convergence
is observed for P =15 and J =2 up until v,; ~ 107!, The observed value of P is close to the
estimate in Eq. (6.25), which for v,; = 107! and k) = 0.320, yields P = p¢, = 13. We remark
that pseudospectral decompositions converge exponentially with the number of modes used.
Therefore, with respect to finite-difference methods that display algebraic convergence, the
framework proposed here is particularly efficient for numerical implementation.

We compare in Fig. 6.4 the spectra obtained with the collisionless model, and with the
Dougherty and the Coulomb collision operators in the moment-hierarchy at v,; = 0.4 for
the values of (kj, k1) that yield the largest y. Figure 6.4 shows a clear difference between the
eigenmode spectra of the two operators. While modes with finite frequency are related to
the damping of electron distribution function, modes at w <« 1 are due to strong collisional
damping of the cold-ion distribution function. The damping rate of the electron modes
decreases with the frequency when the Coulomb collision operator is considered, contrary to
the Dougherty case. This is possibly related to the fact that the collisional drag force decreases
with the particle velocity in the Coulomb collision operator and increases in the Dougherty
one. We note that the eigenmode spectrum using the Dougherty collision operator in Fig. 6.4
is similar to the one obtained in Bratanov et al. (2013) using a Lenard-Bernstein one.
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Figure 6.4: Eigenvalue spectra obtained with the collisionless model, the linearized moment-
hierarchy equation using the Coulomb and the Dougherty collision operator at the wave-
number (kj, k) corresponding to the fastest growing mode in the cold-ion limit for v,; = 0.4
and g, = 0.023. The analysis is carried out with P =15 and J = 2.

6.4 Conclusion

In this chapter, Coulomb collisions are taken into account in the description of magnetized
plasma instabilities at arbitrary collisionalities, focusing on the linear properties of the DW
instability. The analysis we perform in a relatively simple configuration shows that the correc-
tions introduced by the full Coulomb collision operator with respect to simplified collision
operators, presently used in state-of-the-art codes, are qualitatively and quantitatively signifi-
cant at the relevant collisionality regime of operation of future nuclear fusion devices such as
ITER. The results of the present chapter show that the kinetic models introduced in Chapters 2
and 3 are a particularly efficient numerical framework to treat Coulomb collisions that can
easily be to study other instabilities in magnetized plasmas. Indeed, by projecting onto a
Hermite-Laguerre basis the drifts that arise in the Boltzmann equation from possible inhomo-
geneities of the magnetic field, instabilities such as the ballooning mode, can be described
within the framework presented here. Furthermore, we expect that the framework we have
introduced in the present thesis can be extended to nonlinear simulations.
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7 Conclusions and Outlook

This thesis focuses on the plasma dynamics at the tokamak periphery. Despite its importance
for the success of the magnetic confinement fusion program, the development of a model
for the tokamak periphery has been hindered by the fact that this region is characterized
by fluctuation levels of order unity, by the presence of both closed and open magnetic flux
surfaces, and by a wide range of temperatures and densities that result in a wide range of
collisionalities. These challenges, as shown in the present thesis, can be overcome by the use
of moment expansion methods with a suitable set of basis functions that allows a convenient
expression of the integro-differential Coulomb collision operator.

In Chapter 2, a moment-hierarchy model is developed from a first-principles based, full-E
drift-kinetic model, suitable to describe the plasma dynamics in the SOL region of tokamak
devices at arbitrary collisionality. Taking advantage of the separation between the turbu-
lent and gyromotion scales, a gyroaveraged Lagrangian and its corresponding equations of
motion are obtained. The gyroaveraged distribution function is then expanded into a Hermite-
Laguerre basis, and the coefficients of the expansion are related to the lowest-order gyrofluid
moments. The fluid moment expansion of the Coulomb operator in terms of irreducible
Hermite polynomials is reviewed, and its respective particle moments are written in terms of
coefficients of the Hermite-Laguerre expansion, relating both expansions. This allows us to
express analytically the moments of the collision operator in terms of guiding-center moments.
A moment-hierarchy that describes the evolution of the guiding-center moments is derived,
together with a Poisson’s equation accurate up to second order. The resulting set of equations
is then used to derive a fluid model in the high collisionality limit. The results of this chapter
are published in Jorge et al. (2017).

In Chapter 3, a full-F gyrokinetic moment-hierarchy able to evolve the turbulent plasma
dynamics in both the tokamak edge and SOL regions is derived. Taking advantage of the
spatial scale separation between turbulent fluctuations and magnetic field gradients, and
the low-frequency of the fluctuations compared to the ion gyrofrequency, a single-particle
Lagrangian is obtained using two successive noncanonical coordinate transformations in
order to take into account fluctuations present at the k, p; scale. Such transformations are
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derived using Lie transform perturbation theory. The resulting gyrokinetic equation is then
projected onto a Hermite-Laguerre polynomial basis, allowing us to express the gyroaverage
of plasma quantities in a closed analytical form. The electrostatic fields are evolved using
a gyrokinetic formulation of Maxwell’s equations, expressed in terms of coefficients of the
moment-hierarchy expansion coefficients.

Chapter 4 complements the gyrokinetic moment-hierarchy model of Chapter 3 by deriving
a moment-hierarchy formulation of the full-F gyrokinetic Coulomb collision operator, valid in
both the electrostatic and in the electromagnetic regime. The Coulomb collision operator at
arbitrary k p; is ported to a phase-space coordinate system suitable to describe magnetized
plasmas, i.e., to guiding-center and gyrocenter coordinate systems, and projected onto a
Hermite-Laguerre basis. This allows us to describe the plasma dynamics and turbulence in
the tokamak periphery at arbitrary collisionalities and fills a gap in the literature by providing
full Coulomb moments for full-F gyrofluid models.

In Chapter 5, following ?, the effect of full Coulomb collisions on electron-plasma waves
is studied by taking into account both electron-electron and electron-ion collisions. The
proposed framework is particularly efficient, as the number of polynomials needed in order
to obtain convergence is low enough to allow multiple scans to be performed, particularly a
comparison between several collision operators at arbitrary collisionalities. While the use of
electron-ion collisions alone leads to a damping rate slightly smaller than the one evaluated
with the full Coulomb operator, the damping rate using a Lenard-Bernstein or a Dougherty
collision operator yields deviations up to 50% larger with respect to the Coulomb one. An
eigenmode analysis reveals major differences between the spectrum of full Coulomb and
simplified collision operators. In addition, the eigenspectrum shows the presence of purely
damped modes that correspond to the entropy mode. We demonstrate that the entropy mode
needs a full Coulomb collision operator for its proper description, deriving an analytical
dispersion relation for the entropy mode that accurately reproduces the numerical results.

Finally, in Chapter 6, the linear properties of the drift-wave instability are described at
arbitrary collisionalities for the first time. The analysis shows that the corrections introduced
by the full Coulomb collision operator with respect to simplified collision operators, presently
used in state-of-the-art codes, are qualitatively and quantitatively significant at the relevant
collisionality regime of operation of future nuclear fusion devices such as ITER. Indeed, the
drift-wave growth rate is seen to deviate by factors of order unity from fluid and kinetic models
based on simplified collision operators. The results of Chapter 6 are published in Jorge et al.
(2018).

With the present work, a crucial step towards a predictive model of tokamak turbulence
has been accomplished. Although the ordering used in this work when deriving the gyrokinetic
moment-hierarchy equation is, in principle, applicable to describe the plasma dynamics in the
whole machine, we focus on the tokamak periphery region as collisions are expected to limit
the number of terms in the expansion needed, making moment-expansion simulations more
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efficient than standard numerical methods. As a first step of the numerical implementation
of the proposed models, we have considered its linear version. However, plasma dynamics
at the tokamak periphery is essentially turbulent, therefore requiring the development of
nonlinear simulations. In this setting, future extensions of the present work should include the
development of sheath boundary conditions for moment-hierarchy non-linear simulations.
Finally, in order to properly address the treatment of peeling-ballooning modes and the
drift-Alfvén coupling in the edge region, an extension of the model derived here to include
electromagnetic perturbations will be addressed in a future publication (Frei et al., 2019).
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A Drift-Kinetic Basis Transformation

In the present Appendix, we derive the expressions for the coefficients T5 l]}c appearing in
Eq. (2.81). These coefficients allows us to express up to order €e, the relation between fluid
M'F and guiding-center N:F moments via Eq. (2.83). As a first step, we define a transformation
similar to Eq. (2.81) but with isotropic temperatures between both bases

I Le1j2, o, BRRRRI e -y, v
CAPIELT D = Y Y. ThL | 1l ) A
p=0 j=0 Vtha Viha

with the inverse transformation

’2 2 Py /2
H V| — Uja I vy _pi]]‘*'l_zp | T_l Ik
i il7z |= .
tha v 1=0 k=0 pJj (A.2)

tha
x chPIELE2 (D),

Ik —pi
The relation between the coefficients (T ) ~and Tf,g is given by
pj

— 1k VE2P P+ 1/2)k —pj
T = . A3
( )pj (k+1+1/2)! Ik -

By integrating both sides of Eq. (A.1) over the whole velocity space, we can write Tf,g as

Hp(S||)Lj(Si)

e_sﬁ_sids”dsi, (A.4)
2P ply1

TV =fP1(s‘)ClL§C+”2(CZ)
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Appendix A. Drift-Kinetic Basis Transformation

where we suppressed the species index a for simplicity, and find

[1/2)lp/2] k q min(j,i) k- 1)q+l+]+l/+m
=Y IDIEDY Z —mp
G=0 v=0 j=0r=0 s=0 m=0 +tmtv=r

ol L)

N (k—i+1-1/2/(l+p+2(m—-r—v)-D!
(p—20)k—i-m)l+m-1/2)lvim!

We then integrate both sides of Eq. (2.81) with weights H;(sj4)L j(si Bk with the argument

transformation
T. \P/2Lp/2] 1 Tk o — U
Hp(s”a):(_a) y %(kﬁ) HP_Zk(u), (A6)
T||u k=0 k.(p—Zk). Ta Utha
and

I\ Ta\o(, Ta)i* 2
o $1 b o)

k=0 Tia Tiq

to find the relation between the isotropic and anisotropic temperature coefficients

I+2k k+11]2 /2 .
TPl = S J( n )m!éz,,ép,m_m
m=0 n=0 2=0 d=o \n—2) di(m—2d) A8
Tlla pl2 TJ_a T, d Tiq G
N\ | 7 ) 7 |1 T
T, T, Tia T,
(1) _i “72”7 zi”“ dfmz( J ) P10k,
a i .
Pl S0 a=0  1=0 =0 \Jj—z/)d(p-2a) (A9)

X

&)plz (ﬁ)z (1 _ &)d (1 _ &)j_z (—T-l)“’
la T4 T, Tia p—2dz.

Amore efficient algorithm can be found as follows. First, we expand the product P;(¢) c! L;C“/ 2(c?)

—_—
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into products of s and s? in order to write Eq. (A.4) in terms of s and s4 only

l

\1/2] k m+i 21 —-2i
P@eL = X L Z( i
i=0 m=0r=0

1-2i+2r 2(m+i-T)
S S
I L

X (TH/T)I/Z_H"(TJ_/T) :

r

m+i\ (DU +k+1/2))
20k —m)(l+m+1/2)'m!

(A.10)

We then perform the parallel and perpendicular integrations separately, using the fact that

X e X = —
O A TR T

f"o o Hp(x) _ n!l1- mod(n-p,2)

and
f xij(x)e_xdxzm!( " -)(—1)1.
0 m—j

Finally, we apply Egs. (A.11) and (A.12) to Eq. (A.4), yielding

l

i

L2l k m+i(zz—2i) )(m+i) (1) (1 + k+1/2)!
r

TP _
Lk 2 )L l 20k -m)(l+m+1/2)!m!

i=0 m=0r=0
X( m+i—r )(l—2i+2r)!1— mod (I - p,2)

1-2i+2 I-p .
2 (Tp—z+r)!p!

m+i-r—j

(m+i-nr).

(A.11)

(A.12)

(A.13)
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B Expressions for the Moments of the
Collision Operator

In the present Appendix, we present the expressions for the guiding-center moments of the
collision operator relevant for the fluid model in Section 2.6. The collision operator moments
satisfy particle conservation

cY =0, (B.1)

and momentum conservation at lowest order

clV =o, (B.2)

m. l} .
Cl0 = - LML 010, O(ml my). (B.3)
Me Vih|e

Both the like-species and electron-ion satisfy energy conservation exactly, while the ion-
electron operator satisfies Eq. (B.4) at zeroth orderin §,

T1aC2) = V2T 4CY} =0. (B.4)

The remaining moments C 5 /' in the linear transportregime with AT,/ Ty = (T =T 1a) Ty ~
N~ N30~ (uye — uy i)/ Ve ~ 6 4, for ion-electron collisions are given by
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for electron-ion collisions
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and for like-species collisions
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C Spherical Basis Tensors

We start with the definition of the Y!(v) tensor in terms of spherical basis tensors e!/™ in

Eq. (4.39). For the I =1 case, Eq. (4.39) yields

1 dm & 1m
YW =v=y/ v Y. Yim(p,0)e'™. (C.1

m=-1

The spherical basis vectors e!”* can then be derived from Eq. (C.1) by decomposing the vector
vin spherical coordinates as

v=v(singcosfe, +singsinbe, + cospe;), (C.2)
and using the identities for the spherical harmonics

3 —-i0

gpsinge™, m=-1,
Yim($,0) =1 /2= cos, m=0, (C.3)

/3 i0 —
—\/ g7 Singe”, m=1,

therefore obtaining

e.—iey
-1
\/i ) ’
e”={e, m=0, (C.4)
e;tiey, —1

We now construct spherical basis tensors e from the spherical basis vectors e'™” leverag-
ing the techniques developed for the angular momentum formalism in quantum mechanics
(Zettili & Zahed, 2009; Snider, 2017). Indeed, the basis vectors el are eigenvectors of the
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angular momentum matrix G,

0 -1 0
G,=i|l 0 O0f, (C.5)
0 0 O

with eigenvalue m, that is
G,-e'™ = me'™. (C.6)
In general, the angular momentum matrices along any axis n = x, y, z are given by
Gp=—iey,-¢€, (C.7)

with € the standard Levi-Civita tensor. In index notation, Eq. (C.7) can be written as
3
G=—i)_ (en)j€jki (C.8)
j=1

The raising G and lowering G_ operators (corresponding to the ladder operators in quantum
mechanics) are defined by

The allow us to obtain the basis vectors e!*! from e!? using
G.e¥ =el*, (C.10)

Finally, we note that the dual basis e}, = (el )* = (-1)"e!~", together with !, satisfy

e .e  =8um. (C.11)

To obtain the spherical tensor basis /™ for the irreducible tensors Y/, we start with the
spherical basis tensor

ell=elle!l el (C.12)

formed by the product of [ basis vectors e!l. Indeed, similarly to Y!(v), this tensor is of rank [,

11 ell = 0, Furthermore, we note that

symmetric, and traceless between any of its indices, as e
e!! is an eigenvector with eigenvalue / of the angular momentum tensor Gé, with Gfi defined

by

Giz . Tl] = Z {[Gn]jj’ 6kkr...5”r + [6jj’G”]kk’ ...611! + ... +6jj’6kk’--- [Gn]ll’} T;’k’...l”

je b iy

(C.13)
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where T is an arbitrary tensor of rank [. The remaining basis tensor elements e!”* can be
obtained by applying the tensorial lowering operator G_ = Gy — iG), to e"’, namely

Im (l m)! I I-mll
. .14
e —\/ I )!G_ e, (C.14)

with m = -1,-1+1,...,,—1,0,1,...,I. The normalization factor in Eq. (C.14) is obtained by
requiring that the contravariant e/” and the covariant e, = (e/,)* basis tensors form an
orthonormal basis, i.e.,

el el =8 m. (C.15)

For computational purposes, we note that the tensor e/ can also be written as a function of
the basis vectors e!™ as (Snider, 2017)

oy
n=0

where Ny, = V(L +m)(l-m)12-m/2])! and af,m =12 n(m+n)!(l-m-2n).
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D Gyrokinetic Basis Transformation

In this section, we derive a closed form expression for the Tﬁcjm and (T‘l)gj.’" coefficients
defined in Egs. (4.67) and (4.68). By multiplying Eq. (4.67) by a Hermite and a Laguerre

polynomial and by an exponential of the form e‘“z, and integrating over the whole v and 1
space, we obtain the following integral expression for Tﬁc]m

_ Vhd [T (T vy v 7\ -£d
pj _  “tha I\ i+1/2( Ytha la 1 2 v
lem— ' mle (:)Lk ( — )Hp( )Lj 5 e Utha . (D.1)
2pp.ﬁ UJ_ v l}J_ Vl’h(l U[ha 2]7:

We first write the integrand in Eq. (D.1) in terms of & = v)/v and v coordinates using the basis
transformation in Eq. (4.68), yielding

p+2j j+lp/2] .
A+112)k! | pj

T, = g
tkm EO Loy (+k+1/2)0 1k .
- (D.2)
LPMQPr(&) — oo : '
Xf %dé‘f x;l"'l _m+1)/2L§c+1/2(xa)L5d+1/2(xa)dxay
-1 (1-¢)? 0

where we used the fact that (T‘l)fkj = Tﬁcj V2P plk!l(1+1/2)/(k+ 1 +1/2)! (Jorge et al., 2017).
The first integral in Eq. (D.2) is performed by expanding P; as a finite sum of the form

1
P =Y clx, (D.3)
s=0
with the coefficients cé =2l(I+s=1)/211/[s'(1-$)!((s—1—1) /2)!], and using the relation between

associated Legendre functions P;" (x) and Legendre polynomials P;(x)

mi2 4" Pi(x)

m — (1M _ 42
Pr(x)=(=D"(1-x%) g

(D.4)
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The second integral in Eq. (D.2) is performed by using the expansion of the associated Laguerre
polynomials in Eq. (2.69). The Tﬁcjm coefficient can then be written as

p+2j j+lp/2] p] (l’+1/2)k" k

. ,
Tim = Z Z Loe v kT2 4 Z Z Z ZLkrmLkrm2

—0 k= =0myp=081=ms,=

|NA S1+S2—m li

chel st [Lepue L+1—m+1

$17°82 1 [ ] m1+m2+— ' (D.S)
2 (s1-m)! s;+s+1-m 2

The inverse transformation coefficients (771) i)’“]m defined by Eq. (4.68) can be found similarly,
yielding

(T ylkm _ 2PpIEkIL+1/2) 1 - m)! _,;

= . D.6
pJ (k+1+1/2))(1+m)! lkm (D.6)
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