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This thesis entitled "A moment-based model for plasma dynamics at arbitrary collisionality"
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(Jorge et al., 2018). The study on electron-plasma waves of Chapter 5 is submitted to Journal of

Plasma Physics and a preprint is available online (?). Two manuscripts concerning Chapters 3

and 4 are in preparation for submission.
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Abstract
Despite significant development over the last decades, a model able to describe the periphery

region of magnetic confinement fusion devices, extending from the edge to the far scrape-off

layer, is still missing. This is because this region is characterized by the presence of turbulent

fluctuations at scales ranging from the Larmor radius to the size of the machine, the presence

of strong flows, comparable amplitudes of background and fluctuating components, and a

large range of collisionality regimes. The lack of a proper model has undermined our ability to

properly simulate the plasma dynamics in this region, which is necessary to predict the heat

flux to the vessel wall of future fusion devices, the L-H transition, and ELM dynamics. These

are some of the most important issues on the way to a fusion reactor. In the present thesis, a

drift-kinetic and a gyrokinetic model able to describe the plasma dynamics in the tokamak pe-

riphery are developed, which take into account electrostatic fluctuations at all relevant scales,

allowing for comparable amplitudes of background and fluctuating components. In addition,

the models implement a full Coulomb collision operator, and are therefore valid at arbitrary

collisionality regimes. For an efficient numerical implementation of the models, the resulting

kinetic equations are projected onto a Hermite-Laguerre velocity-space polynomial basis,

obtaining a moment-hierarchy. The treatment of arbitrary collisionalities is performed by

expressing the full Coulomb collision operator in guiding-center and gyrocentre coordinates,

and by providing a closed formula for its gyroaverage in terms of the moments of the plasma

distribution function, therefore filling a long standing gap in the literature. The use of system-

atic closures to truncate the moment-hierarchy equation, such as the semi-collisional closure,

allows for the straightforward adjustment of the kinetic physics content of the model. In the

electrostatic high collisionality regime, our models are therefore reduced to an improved set of

drift-reduced Braginskii equations, which are widely used in scrape-off layer simulations. The

first numerical studies based on our models are carried out, shedding light on the interplay

between collisional, using the Coulomb collision operator, and collisionless mechanisms. In

particular, the dynamics of electron-plasma waves and the drift-wave instability are studied

at arbitrary collisionality. A comparison is made with the collisionless limit and simplified

collision operators used in state-of-the-art simulation codes, where large deviations in the

growth rates and eigenmode spectra are found, especially at the levels of collisionality relevant

for present and future magnetic confinement fusion devices.

Keywords: Plasma Physics, Nuclear Fusion, Magnetic Confinement, Plasma Turbulence,

Plasma Instabilities, Kinetic Theory
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Résumé
Malgré un important développement au cours de ces dernières décennies, un modèle capa-

ble de décrire la région périphérique des dispositifs de fusion à confinement magnétique,

s’étendant du bord au scrape-off layer, fait toujours défaut. En effet, cette région est caractéri-

sée par la présence de fluctuations turbulentes sur des échelles allant du rayon de Larmor à la

taille de la machine, de forts flux, d’amplitudes de fluctuation comparables à celles d’équilibre,

ainsi que d’une large gamme de régimes de collisionnalité. L’absence d’un modèle approprié a

compromis notre capacité à simuler correctement la dynamique du plasma dans cette région,

ce qui est nécessaire pour prévoir le flux de chaleur vers la paroi des futurs dispositifs de

fusion, la transition L-H, ainsi que la dynamique des ELMs, qui sont parmi les plus importants

obstacles sur la voie d’un réacteur à fusion. Dans la présente thèse, un modèle de dérive-

cinétique et un modèle gyrocinétique capables de décrire la dynamique du plasma dans la

périphérie du tokamak sont développés. Ces modèles prennent en compte les fluctuations

électrostatiques à toutes les échelles d’intérêt, permettant ainsi aux niveaux de fluctuations

d’être comparables aux valeurs d’équilibre. De plus, les modèles présents possèdent un opéra-

teur de collision de Coulomb exact permettant son application à des niveaux arbitraires de

collisionnalité. Pour une implémentation numérique efficace du modèle, l’équation cinétique

résultante est projetée sur l’espace des vitesses par le truchement d’une base polynomiale

d’Hermite-Laguerre, établissant ainsi une hiérarchie de moments. Le traitement des niveaux

arbitraires de collisionnalité s’effectue en exprimant l’opérateur de Coulomb dans les coordon-

nées d’espace de phase correspondant au centre de guidage et au gyrocentre, en fournissant

ainsi une relation fermée pour sa gyro-moyenne en fonction des moments de la fonction

de distribution du plasma, comblant un vide persistant de longue date dans la littérature.

L’utilisation de troncatures systématiques pour l’équation de la hiérarchie des moments, telle

que la troncature semi-collisionnelle, permet un ajustement simple du contenu cinétique et

physique du modèle. Dans le régime électrostatique hautement collisionnel, notre modèle

se réduit à une version améliorée des équations de dérive de Braginskii, qui sont largement

utilisées dans les simulations numériques de la dynamique du plasma au bord des réacteurs

à fusion. Les premières études numériques basées sur notre modèle sont réalisées, mettant

en lumière l’interaction entre les mécanismes liés aux différents niveaux de collision grâce à

l’utilisation de l’opérateur de Coulomb. En particulier, nous étudions la dynamique des ondes

électron-plasma et l’instabilité des ondes de dérive dans des niveaux de collisionnalité arbi-

traires. Une comparaison est ainsi réalisée avec différents opérateurs de collision simplifiés et

avec la limite non collisionnelle, utilisés dans les codes de simulation les plus avancés. En effet,
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Résumé

ceux-ci produisent des écarts importants dans les taux de croissance et les spectres des modes

propres, en particulier aux niveaux intermédiaires de collisionnalité qui sont importants pour

les réacteurs de fusion par confinement magnétique actuels et futurs.

Mots clefs: Physique des Plasmas, Fusion Nucléaire, Confinement Magnétique, Turbulence

de Plasma, Instabilités des Plasmas, Théorie Cinétique
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Resumo

Apesar de nas últimas décadas se ter verificado um desenvolvimento significativo, ainda

não foi concebido um modelo capaz de descrever a região periférica de máquinas de fusão por

confinamento magnético, estendendo-se desde o bordo até à scrape-off layer. A dificuldade

reside no facto de esta região ser caracterizada pela presença de flutuações turbulentas a

escalas espaciais muito distintas, compreendidas entre o raio de Larmor dos eletrões e a

dimensão da máquina, pela presença de fortes fluxos de plasma, por componentes de equi-

líbrio e flutuantes de amplitude comparável, e por uma ampla gama de regimes colisionais.

A ausência de um modelo adequado tem posto em causa a nossa habilidade para simular

corretamente a dinâmica do plasma nesta região, sendo tal necessário para prever o fluxo

de calor na parede de máquinas de fusão futuras, a transição L-H, e a dinâmica de ELMs.

Estas são algumas das questões mais importantes no caminho para um reator de fusão. Na

presente tese, um modelo de deriva-cinética e um modelo girocinético capazes de descrever a

dinâmica de plasma na periferia do tokamak são desenvolvidos, levando em conta flutuações

eletrostáticas a todas as escalas relevantes, permitindo componentes de equilíbrio e flutuantes

de amplitude comparável. Além disso, os modelos implementam um operador de colisão de

Coulomb completo, sendo assim válidos para regimes de colisionalidade arbitrária. De modo

a obter uma implementação numérica dos modelos, a equação cinética obtida é projetada

numa base polinomial de Hermite-Laguerre no espaço das velocidades, obtendo assim uma

hierarquia de momentos. O tratamento de colisionalidades arbitrárias é feito expressando

o operador de colisão de Coulomb em coordenadas de centro-guia e de girocentro, forne-

cendo assim uma fórmula fechada para a sua média de giração em termos de momentos da

função de distribuição, colmatando assim uma lacuna de longa data na literatura. O uso de

fechos sistemáticos para truncar a equação de hierarquia de momentos, tais como o fecho

semi-colisional, permite uma seleção imediata do conteúdo de física cinética contida no

modelo. Num regime eletrostático de alta colisionalidade, o nosso modelo reduz-se a um

conjunto melhorado de equações de deriva reduzidas de Braginskii, que têm sido amplamente

utilizadas em simulações da scrape-off layer. Os primeiros estudos numéricos baseados no

nosso modelo são apresentados, levando assim à compreensão de alguns pontos essenciais

sobre a interação entre mecanismos não colisionais e colisionais, utilizando um operador de

colisão de Coulomb adequado. Em particular, estudamos a dinâmica de ondas de plasma

eletrónicas e a instabilidade de ondas de deriva a colisionalidades arbitrárias. Uma compa-

ração é feita com o limite não colisional e operadores de colisão simplificados utilizados em
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Resumo

códigos de simulação atuais, onde grandes desvios nas taxas de crescimento e espetro de

modos próprios são encontrados, especialmente a níveis de colisionalidade relevantes para

máquinas de confinamento magnético presentes e futuras.

Palavras-chave: Física de Plasmas, Fusão Nuclear, Confinamento Magnético, Turbulência

de Plasma, Instabilidades de Plasma, Teoria Cinética
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1 Introduction

The growth of the world’s economy is made possible by a continuous increase in primary

energy consumption. Indeed, a substantial amount of energy is required in order to keep

improving the living standards of both developing and developed economies. As shown in

Fig. 1.1, between 1992 and 2017, the primary energy consumption of the world increased

by 70%, from 8 billion to a 13.5 billion tons oil equivalent (Chen & Wu, 2017). In 2016, the

world consumption of energy grew by 1.3%, and a growth of 2.2% was recorded in 2017, the

highest since 2013. The growth is projected to continue increasing in the next years (British

Petroleum, 2018). Such growth had a direct impact on the climate, particularly through the

global emissions of CO2, which doubled in the period 1975-2015 and are projected to triple by

2040 (Chu et al., 2016). The amount of energy generated from fossil fuels needs to be severely

limited if the production of greenhouse gases such as CO2 is to be reduced. Therefore, there is

an urge to outline possible paths towards sustainable energy production and consumption. In

this context, a huge effort is currently devoted to investigate the possibility of using fusion as a

source of energy that can ultimately address the increasing world energy demand.

Fusion is a form of nuclear energy, the main source of energy in the Sun and other stars.

Here, light nuclei with combined initial mass mi recombine into one or more atomic nuclei

with mass m f . When m f < mi , the difference in mass between the initial and final particles is

converted into released energy E according to Einstein’s relation

E = (mi −m f )c2, (1.1)

where c is the speed of light. Among all possible fusion reactions that release energy, the one

between deuterium-tritium (DT)

2
1D+3

1 T →4
2 He+1

0 n, (1.2)

is considered to be the best suited reaction for the first generation of fusion devices (Freidberg,

2007). This reaction yields a net energy of 17.6 MeV that goes into the kinetic energy of

the fusion products, approximately 3.5 MeV to 4
2He and 14.1 MeV to 1

0n. The kinetic energy

1
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Figure 1.1: World primary energy consumption between 1992 and 2017 in million tonnes oil
equivalent. In 2017 alone, energy consumption grew 2.2%, with the largest increment provided
by natural gas, followed by renewable power and oil. Source: British Petroleum (2018).

imparted to the neutrons will be used to produce electricity. The energy of the 4
2He will be

used to heat the fresh fusion fuel and compensate for the unavoidable heat losses, keeping

the reaction going. The deuterium for the fusion process can be extracted from sea water. On

the other hand, tritium can be obtained from the reaction of the neutron with the lithium

in a blanket surrounding the device. A fusion reactor is expected not to produce long-lived

radioactive waste. Indeed, with an appropriate choice of materials, half-lives of dozens of

years can be achieved (Fetter et al., 1988).

The material in a fusion reactor must be sufficiently well confined with a sufficiently high

temperature T and density n for the 4
2He energy to balance the energy losses due to radiation,

conduction, and convection. This statement can be quantified into a single constraint in terms

of T , n, and confinement time, τ. The confinement time is defined as the energy content of the

plasma W divided by the power loss Ploss, τ=W /Ploss (with the thermal energy of the plasma

W given by the integral over volume of the energy density naTa summed over all species a).

Indeed, for self-sustained fusion reactors, the power loss Ploss has to be compensated by the

energy produced by the fusion reactions, such that f E f p ≥ Ploss where f is the number of

fusion reactions per time unit and E f p the energy of the charged fusion products. Assuming

that the plasma in the reactor is composed by electrons, deuterium, and tritium with roughly

the same density and temperature, and assuming that the distribution of energy of the plasma

particles follows a Gaussian distribution, a minimum value for the product nTτ can be found,

yielding the condition (Wesson, 2004)

τnT > 5×1021 s m−3 keV, (1.3)

with a minimizing value of Tmin = 15 keV (which is in fact one order of magnitude higher than

2



the temperatures at the sun’s core, ∼ 1 KeV). Equation (1.3) is commonly known as Lawson’s

criterion.

At the temperatures necessary for self-sustained fusion, the fusion fuel is fully ionized, i.e.,

electrons are stripped away from their atomic nuclei as the ionization energy of the plasma

elements (∼10 eV) is a few orders of magnitude below the keV range. The resulting neutral gas

of dissociated electrons and ions is called a plasma. As both electrons and ions are electrically

charged, the particles in the plasma interact through electromagnetic forces. Ultimately,

the description of a plasma can be reduced to the understanding of the trajectories of its

constituting particles. This usually involves solving an extremely complex set of equations

in typically non-trivial geometry settings to study the motion of charged particles in the

electromagnetic fields that are both externally applied and generated by the plasma itself.

Several strategies have been devised to confine the plasma in fusion conditions, with

two main lines of research pursued today: inertial and magnetic confinement fusion. In

inertial confinement fusion, nuclear fusion reactions are initiated through the heating and

compression of a fuel target by high-energy laser, electron, or ion beams. With very high

plasma densities (n ∼ 1030 m−3), Eq. (1.3) allows for short confinement times (τ∼ 10−9 s). On

the other hand, in magnetic confinement fusion, the plasma is confined by strong magnetic

fields. Magnetic confinement fusion reactors are targeted to work at considerably lower

densities (n ∼ 1020 m−3) that are, in fact, much lower than the density of air (n ∼ 1025 m−3).

This constraints the confinement time to be greater than at least one second, according to

Eq. (1.3). The present thesis focuses on magnetic confinement fusion.

The magnetic field B = Bb necessary to ensure plasma equilibrium in magnetic fusion

devices can be derived from the force balance equation (Freidberg, 2007)

J×B =∇P, (1.4)

where J is the plasma current, related to the magnetic field by Ampère’s law

∇×B =µ0J, (1.5)

and P is the plasma pressure. The force balance equation, Eq. (1.4), is derived from the

magnetohydrodynamics (MHD) equation of motion in the steady state limit without flows,

and it essentially provides the amount of current necessary to magnetically confine a plasma

with finite pressure. From Eq. (1.4), we see that the vectors B and J should lie on surfaces of

constant pressure, as B·∇P = J·∇P = 0. This statement, combined with the fact that, according

to Poincaré’s theorem, a compact surface which is everywhere tangential to a non-vanishing

vector field free of singularities must have the topology of a torus (Helander, 2014), shows

that surfaces of constant pressure in a magnetically confined plasma must have a toroidal

geometry, and that field lines of B and J should wind around the torus (see Fig. 1.2). There

are three ways to twist the magnetic field lines around a torus: by driving an electric current

through the plasma, by rotating the poloidal cross-section of the magnetic flux surfaces along

3
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Figure 1.2: Schematics of two magnetic confinement fusion designs: tokamaks (a) and stel-
larators (b). The twist in magnetic field lines in the tokamak is driven by a current generated
in the plasma, while in the stellarator, a plasma current is not needed as magnetic field lines
are twisted entirely by external non-axisymmetric coils. Source: (Xu, 2016).

the toroidal direction, or by making the magnetic axis not lie in a plane (this is called magnetic

torsion) (Mercier, 1964; Helander, 2014). Currently, the magnetic confinement fusion device

that showed higher confinement times and is more theoretically and experimentally advanced

is the tokamak (Fig. 1.2 a). In tokamaks, magnetic field line twisting is provided by means of

a plasma current only. This contrasts with stellarators that usually rely on a combination of

both rotation of the flux surfaces’ poloidal cross-section and torsion of the magnetic axis.

1.1 The Tokamak Device

In a tokamak, the plasma is confined by means of a magnetic field inside a toroidal chamber,

as shown in Fig. 1.2 (a). The largest tokamak in operation today is JET, where the highest ratio

Q between the fusion power generated in the reactor and the external heating power, namely

Q ' 0.7, with a triple product nTτ' 8×1020 keV s m−3 was obtained (Jacquinot, 2010). The

achievements in tokamak research paved the way to the construction of the ITER tokamak in

France, expected to produce its first plasma in 2025, with the goal of obtaining Q = 10 (Aymar

et al., 2002) and show the feasibility of using magnetic confinement fusion as a source of

energy. A schematic diagram of the ITER fusion reactor is shown in Fig. 1.3.

The magnetic field in a tokamak is generated by a combination of coils arranged on a set

of equidistant poloidal planes, creating the toroidal component of the magnetic field, and by

plasma current driven by a toroidal electric field which is induced, thanks to a transformer

action, by the central coils in Fig. 1.2 (a). The plasma in the tokamak can be heated to

temperatures of a few keV leveraging the fact that plasma current produces ohmic heating.

However, temperatures above 10 keV are necessary to ignite the fusion reactions are achieved

by means of additional heating using particle beams or electromagnetic waves (Wesson, 2004).

While such temperatures are expected to be achieved in the plasma core, the periphery region

of the plasma should be substantially colder in order not to damage plasma-facing materials,
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Figure 1.3: Schematic of the ITER (International Thermonuclear Experimental Reactor) device,
including its divertor (blue), external coils (orange and green), and its D-shaped vessel. Source:
iter.org

ensuring a reasonable lifetime of the device, and avoiding the impurities sputtered by the

solid walls to contaminate the plasma and decrease its stability and confinement properties.

Ultimately, the complex interaction between the plasma and the device can constitute a

limiting factor in achieving Lawson’s criterion, Eq. (1.3). For this reason, several mechanisms

to control the plasma-solid interaction are devised. In most of present tokamaks and in ITER,

the flux of heat and particles is typically diverted to the bottom of the device in the divertor

region (blue region in Fig. 1.3). A divertor configuration of a tokamak plasma is shown in

Fig. 1.4, together with a typical structure of the magnetic flux surfaces that allow the removal

of heat and particles through the divertor. In this thesis, we mainly focus on the plasma

periphery region, composed of the edge, where the magnetic field lines lie on flux surfaces

that do not intercept the wall of the device, and the scrape-off layer (SOL), where the magnetic

field lines intercept the wall of the device (see Fig. 1.4). The magnetic flux surface that defines

the separation between these two regions is called the last closed flux surface, or separatrix.

1.2 Modelling of Plasma Dynamics at the Tokamak Periphery

A full understanding of the dynamics at the tokamak edge and SOL regions is essential for the

successful operation of future fusion experiments and reactors, as this region is responsible

for much of the overall confinement of the tokamak device (Ricci, 2015). In the edge region of

magnetic fusion devices operating a regime of improved confinement (the so-called H-mode

observed in many present devices and predicted to occur in many future devices such as

ITER) a pedestal develops, i.e., the profiles of density and temperature become very steep near

the separatrix and a radial electric field is formed, which is thought to be responsible for the
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Core

SOL

Edge

Figure 1.4: Poloidal cross-section of a tokamak plasma, divided into three regions: most inward
hotter region (core), most outward region with closed magnetic flux surfaces in red (edge),
region with magnetic field lines that intercept the wall of the device in yellow (SOL).

reduction of turbulence levels (Wagner et al., 1984). The H-mode pedestal can be periodically

relaxed due to Edge-Localized Modes (the so-called ELMs), yielding large amplitude bursts

of particle and heat exhaust into the SOL (Leonard, 2014), which are a major concern on the

way to fusion. The SOL region, on the other hand, controls the plasma heat exhaust, plasma

refuelling and the removal of fusion ashes, and sets the boundary between the plasma and the

vessel. Moreover, in the SOL, due to the presence of a complex magnetic geometry, typical

coordinate systems used for core simulations are found to be singular. Due to the crucial role of

the tokamak periphery region on the performance of a fusion device, significant experimental

and theoretical work has been devoted in the last few decades to the understanding of the

fundamental mechanisms governing the dynamics of this region (Loarte et al., 2007).

The dynamics of the plasma at the tokamak periphery region is observed to be strongly

nonlinear. Fluctuations occur on a broadband range of wavenumbers k ∼∇ logn ∼∇ logT and

frequencies ω∼ |∂t logn| ∼ |∂t logT | (Scott, 2007), and are strongly anisotropic, i.e., wavenum-

bers parallel to the magnetic field (k∥ = k ·b) are much smaller than the perpendicular ones

(k⊥ = k−k∥b). Modes present in the edge can have perpendicular wavelengths as low as the

ion gyration radius ρi (ρi ∼ 0.3 cm at T = 1 keV an B = 1 T) and, in the SOL, the dominant

turbulent modes have a perpendicular wavelengths that are usually one order of magnitude or

more smaller than ρi (ρi ∼ 0.3 mm at T = 10 eV an B = 1 T) (Agostini et al., 2011). The typical

ρi lengths at the tokamak periphery and core are indeed much smaller than the tokamak mi-
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nor and major radius, a and R, respectively, of typical magnetic field gradient lengths LB ∼ R,

and of typical scale lengths of the fluctuations in the parallel direction L∥ ∼ 1/k∥. Regarding

turbulent frequencies ω, these are typically much lower than the ion gyrofrequencyΩi (Hahm

et al., 2009).

The gyrokinetic model is the most established one to describe tokamak turbulence in the

ordering k⊥ρi ∼ 1, ω/Ωi ¿ 1 and k∥/k⊥ ¿ 1 (Catto, 1978; Frieman & Chen, 1982; Brizard &

Hahm, 2007; Parra & Catto, 2008; Hahm et al., 2009). Gyrokinetic theory provides a rigorous

framework to remove the details of the charged particle’s gyromotion and other high frequency

phenomena. A variety of numerical methods have been developed to solve numerically the

gyrokinetic equation, with the two main types being the continuum (Jenko & Dorland, 2001)

and the particle-in-cell (Lee, 1987) methods. These methods have allowed major progress in

the understanding of tokamak turbulence in the core, where a low collisionality model can be

used and plasma quantities can be split between fluctuating and time-averaged components,

in order to evolve only the former (the so-called δ f approach) (Kinsey et al., 2011). Among

several gyrokinetic codes used to describe plasma turbulence in the tokamak core, we mention

CGYRO (Candy et al., 2016), GEM (Parker et al., 1999), GENE (Jenko et al., 2000; Gorler et al.,

2011), GKV (Watanabe & Sugama, 2006), GKW (Peeters et al., 2009), GS2 (Kotschenreuther

et al., 1995; Dorland et al., 2000), GYRO (Candy & Waltz, 2003), GYSELA (Latu et al., 2007),

and ORB5 (Jolliet et al., 2007). However, some complications arise when applying established

gyrokinetic simulations for the tokamak core to the plasma periphery. In the edge and SOL,

the plasma is turbulent, with fluctuation levels of order unity, which renders conventional δ f

gyrokinetic approaches unable to handle such conditions, as opposed to more computational

demanding approaches that do not separate fluctuating and time-averaged quantities, also

called full-F approaches. Furthermore, while the core is weakly collisional with temperatures

of ∼ 10 keV, the tokamak periphery is characterized by temperatures ranging from the keV

range at the inner edge to a few eV in the far SOL region, with a similar order of magnitude

variation for the plasma density. The development of a gyrokinetic collision operator derived

from first principles, able to handle arbitrary collisionality regimes in a turbulent setting

is still the subject of ongoing research (Hirvijoki et al., 2017). Indeed, there are only a few

recent attempts to use gyrokinetic simulations for the tokamak periphery. Among these, we

mention COGENT (Dorf et al., 2013), ELMFIRE (Heikkinen et al., 2008), G5D (Kawai et al.,

2017), GKEYLL (Shi et al., 2017), TEMPEST (Xu et al., 2010), and XGC1 (Chang et al., 2009).

We remark that the effect of Coulomb collisions between charged particles is crucial to

accurately predict the growth rate of instabilities occurring in magnetic confinement fusion

devices and to predict the level of turbulent transport (Barnes et al., 2009). Collisions are not

only a major regulator of low-frequency turbulence and associated transport, but they also

determine the steady state of the system by dictating the long term evolution of the plasma

quantities. Although several theoretical studies have emerged in order to derive an appropriate

Coulomb collision operator for drift-kinetic and gyrokinetic formulations (Brizard, 2004;

Sugama et al., 2015; Burby et al., 2015), such operators still involve a complicated nonlinear six-

dimensional phase-space integral to be performed (Hirvijoki et al., 2017). Due to constraints
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related to code parallelization and computational resources, a numerical implementation of

such intricate formulations of the Coulomb collision operator is still out of reach.

Because of the limitation of current gyrokinetic models, for numerical reasons, and due

to their simplicity, fluid models that incorporate the drift ordering approximation k⊥ρi ¿ 1

have become the standard for SOL theoretical and numerical modelling (Zeiler et al., 1997;

Ribeiro & Scott, 2008). Notable examples include BOUT++ (Dudson et al., 2009), GBS (Ricci

et al., 2012), GDB (Zhu et al., 2018), GRILLIX (Stegmeir et al., 2018) HESEL (Nielsen et al.,

2015), STORM (Easy et al., 2014), and TOKAM3X (Tamain et al., 2009). Such models are

usually derived from the Braginskii fluid equations (Braginskii, 1965), where the plasma is

assumed to be close to thermodynamic equilibrium because of collisions, i.e., assuming

that the electron νe and ion νi collision frequencies are larger than the typical turbulent

frequencies. For L-mode cold SOL plasmas, fluid models have been successfully benchmarked

against experimental results (Riva et al., 2016; Militello et al., 2016). Moreover, in such regimes,

previous studies on the plasma dynamics at the SOL region (Ricci & Rogers, 2013; Mosetto

et al., 2015) have estimated key SOL parameters such as cross-field transport, plasma scale

lengths, and instability thresholds through a careful combination of linear analysis of the

turbulent modes and turbulent saturation mechanisms, yielding a simple physical picture

of SOL turbulence as the interplay between turbulent transport and plasma losses at the

vessel wall. However, inside the separatrix, in the edge region, although turbulence is still

mediated by low-frequency fluctuations, the plasma becomes hotter, less collisional, and small

scale k⊥ρi ∼ 1 fluctuations become important (Hahm et al., 2009). Also, when events such as

ELMs expel large amounts of heat and particles to the SOL and to the wall, the description

of such high-temperature structures requires a kinetic treatment valid at arbitrary collision

frequencies, such as drift-kinetic theory (Hazeltine & Meiss, 2003). These ultimately require to

incorporate the effects of Coulomb collisions using an accurate Coulomb collision operator.

We believe that a model that evolves a set of three-dimensional moments of the kinetic

distribution function represents the best choice to simulate tokamak periphery plasmas in an

accurate and efficient manner. Such a framework has the inherent flexibility of providing a

description that spans from the fluid models, when a low number of moments is used and a

coarse plasma description is needed, to fully kinetic models, for accurate plasma simulations.

To build this model, the plasma distribution function f is expanded in a suitable set of

basis functions, i.e., a set of orthogonal polynomials ensuring that the expansion coefficients

converge rapidly in order to allow manageable numerical implementation and simulations

with a minimum number of terms. In this work, we show that this model, which is indeed a

moment-hierarchy, formulated in terms of Hermite and Laguerre orthogonal polynomials,

fulfills these requirements, and that it can be used to study the dynamics at the tokamak

periphery, both in the fluid and in the gyrokinetic regime. The use of Hermite polynomials

in plasma physics can be traced back to the work of Grad (1963), which used a tensorial

formulation of the Hermite polynomials, the so-called reducible Hermite polynomials [as

opposed to the irreducible ones used in Balescu (1988)]. In fact, the orthogonal basis associated

with a Gaussian weight consists of Hermite polynomials. The Gaussian function is relevant for
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statistical and plasma physics as the long term and stationary solution of the collisional kinetic

equation is given by the Maxwell-Boltzmann distribution (a Gaussian function in velocity

space) (Helander & Sigmar, 2005). We note that, although moment-hierarchy methods have a

long history in plasma physics (Grad, 1963; Braginskii, 1965; Balescu, 1988), only recently such

formulations were developed for arbitrary collisionality regimes, using reducible (Hirvijoki

et al., 2016), irreducible (Ji & Held, 2009), and scalar (Jorge et al., 2017) Hermite polynomials.

1.3 Scope and Outline of the Thesis

With the final goal of gaining a deeper understanding and obtaining a predictive tool for

the plasma dynamics in the periphery region of magnetic confinement fusion devices, in

the present thesis, we develop a moment-hierarchy framework able to evolve the plasma

dynamics at the tokamak periphery. A first-principles model is developed based on the careful

reconstruction of the motion of single charged particles in a regime relevant for the tokamak

periphery. We consider first the drift-kinetic limit assuming k⊥ρi ¿ 1, a regime of interest

for the SOL. Then, gyrokinetic fluctuations at k⊥ρi ∼ 1 are included. The collective motion

of particles is described by an appropriate kinetic equation, including the effect of Coulomb

collisions. Aiming for a numerical efficient framework, we expand the distribution function

in a Hermite-Laguerre moment-hierarchy set of equations valid at arbitrary collisionalities,

where the integro-differential character of the Coulomb collision operator is converted into

linear combinations of moments of the distribution function. The feasibility of the numerical

implementation is shown by the study of the linear evolution of electron-plasma waves and

of the drift-wave instability. This study serves not only as a proof of concept of the Hermite-

Laguerre formulation, but it also allows, for the first time, the accurate calculation of the

impact of collisions in such linearized systems at arbitrary collisionalities.

We note that, in the present work, we focus on the electrostatic limit, which requires three

criteria to be satisfied: (1) that β = nTe /(B 2/2µ0) ¿ 1, (2) that α = βa/Lp stays below the

electromagnetic ballooning instability threshold, and (3) that the frequency of interest is far

below the shear Alfvén frequency. While condition (1) is, in general, valid across the tokamak

periphery region, condition (2) can be broken down in the edge region in the H-mode regime

and condition (3) may be violated near an X-point where parallel wavenumbers can make

the shear Alfvén frequency similar to the one of the turbulence. Therefore, we note that the

electrostatic approximation employed in this work rules out drift-Alfvén coupling and the

treatment of peeling-ballooning modes in the edge. An extension of the model derived here to

include electromagnetic perturbations will be addressed in a future publication (Frei et al.,

2019). Finally, we point out that the Coulomb collision operator and its velocity moments

derived in this work remain unchanged when electromagnetic perturbations are taken into

account.

This thesis is structured as follows. In Chapter 2, we develop a full-F drift-kinetic model to

describe the plasma dynamics in the scrape-off layer region of tokamak devices at arbitrary col-
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lisionalities, closely following (Jorge et al., 2017). The formulation is based on a gyroaveraged

Lagrangian description of the charged particle motion, and the corresponding drift-kinetic

Boltzmann equation that includes a full Coulomb collision operator. The Hermite–Laguerre

velocity space decomposition of the distribution function is used, and a set of equations to

evolve the coefficients of the expansion is presented, including the moments of the Coulomb

collision operator, therefore describing plasma distribution functions arbitrarily far from

equilibrium. A fluid closure in the high collisionality limit is presented, and the corresponding

fluid equations are compared with previously derived fluid models.

In Chapter 3, a gyrokinetic moment-hierarchy model describing the plasma dynamics

in the tokamak periphery is derived within a full-F framework. With respect to the drift-

kinetic model of Chapter 2, this model evolves periphery turbulence in the presence of time-

dependent electrostatic fluctuations on scale lengths ranging from the ion gyroradius to

typical time-averaged gradient lengths. The formulation is based on a nonlinear second order

accurate gyrokinetic equation, derived from Hamiltonian perturbation theory methods. The

electrostatic field is evolved according to the gyrokinetic Poisson’s equations. A moment-

hierarchy formulation of the resulting set of equations is performed, yielding a fluid-like set of

equations, valid at k⊥ρi ∼ 1.

A moment expansion of the Coulomb collision operator valid at arbitrary collisionality and

k⊥ρi ∼ 1 is presented in Chapter 4. This is done by performing a multipole expansion of the

Rosenbluth potentials, similar to commonly employed multipole expansions in electrostatics

(Jackson, 1998). This allows us to derive the dependence of the full Coulomb collision operator

on the particle gyroangle in terms of scalar spherical harmonics. Finally, the resulting operator

is projected onto a Hermite-Laguerre polynomial basis, yielding analytically closed formulas

for numerically implementation.

In Chapter 5, following (?), the linearized moment-hierarchy equation is numerically

solved to describe the dynamics of electron-plasma waves. The damping rate, frequency and

eigenmode spectrum of electron-plasma waves are found as a function of the collision fre-

quency and wavelength. A comparison is made with the collisionless limit and with simplified

collision operators, where large deviations are found in the damping rates and eigenmode

spectra. Furthermore, we show the presence of a purely damped entropy mode, characteristic

of a plasma where Coulomb collisions are dominant. The dispersion relation of this mode is

analytically derived and compared with numerical results.

In Chapter 6, we focus on the drift-wave instability. We show that the moment-hierarchy

framework allows retrieving established collisional and collisionless limits, closely following

(Jorge et al., 2018). At the intermediate collisionalities relevant for present and future magnetic

nuclear fusion devices, deviations with respect to collision operators used in state-of-the-art

turbulence simulation codes show the need for retaining the full Coulomb operator in order

to obtain both the correct instability growth rate and eigenmode spectrum. We note that,

ultimately, this may significantly impact quantitative predictions of transport levels.
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Finally, in Chapter 7, the results and outlook of the thesis are summarized.
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2 A Drift-Kinetic Model for Scrape-off
Layer Plasma Dynamics

A physical theory describing the dynamics of magnetized plasma systems is considered to

be closed and, more fundamentally, predictive, if it provides a constitutional relation for the

sources of Maxwell’s equations, namely the charge density ρ and current density J, in terms of

the electromagnetic fields (φ,A). Kinetic theory achieves this goal by providing a distribution

function fa for each species a in the plasma, where fa is a measure of the number of particles

of species a near point x, having velocity v, at time t per unit volume and is normalized such

that
∫

f dxdv = N with N the total number of particles in the system. When fa is known, the

charge density and current density can be obtained by taking velocity moments of fa , namely

with ρ =∑
a qa

∫
fadv and J =∑

a qa
∫

v fadv where qa is the charge of the species a.

The equation for the evolution of fa is derived from the analysis of the trajectories of

the particles in the plasma. When the details of particular temporal or spatial scales can

be neglected, the equation for the evolution of fa can be greatly simplified. This is the case

of drift-kinetic theory, where the description of the charged particles inside the plasma is

reduced to the behavior of its guiding-centers (Hazeltine & Meiss, 2003). This is particularly

useful in the SOL, where fluctuations are characterized by frequencies lower than the ion

gyrofrequency (Endler et al., 1995; Agostini et al., 2011; Carralero et al., 2014; Garcia et al.,

2015), and the turbulent eddies, which include coherent radial propagation of filamentary

structures (D’Ippolito et al., 2002, 2011; Carreras, 2005; Serianni et al., 2007), have a radial

extension comparable to the time-averaged SOL pressure gradient length Lp (Zweben et al.,

2007).

In recent years, there has been a significant development of first-principles simulations

of the SOL dynamics with both kinetic (Tskhakaya, 2012) and gyrokinetic (Xu et al., 2007;

Shi et al., 2015; Chang et al., 2017; Shi et al., 2017) codes. However, as kinetic simulations

of the SOL and edge regions remain prohibitive as they still are computationally extremely

expensive, the less demanding fluid simulations are the standard of reference. The fluid

simulations are usually based on the drift-reduced Braginskii (Braginskii, 1965; Zeiler et al.,

1997) or gyrofluid (Ribeiro & Scott, 2008; Held et al., 2016) models to evolve plasma density,

fluid velocity and temperature. Fluid models assume that the distribution function is close
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to a local Maxwellian, and that scale lengths along the magnetic field are longer than the

mean free path. However, kinetic simulations show that the plasma distribution function is

far from Maxwellian in the SOL region (Tskhakaya et al., 2008; Lonnroth et al., 2006; Battaglia

et al., 2014) and that collisionless effects in the SOL might become important (Batishchev

et al., 1997). This is expected to be particularly true in ITER and other future devices that will

be operated in the high confinement mode (H-mode) regime (Martin et al., 2008). In such

cases, a transport barrier is formed that creates a steep pressure gradient at the plasma edge.

If the pressure gradient exceeds a threshold value, ELMs are destabilized (Leonard, 2014),

expelling large amounts of heat and particles to the wall. Describing structures with such high

temperatures (and therefore low collisionality) with respect to the background SOL plasma

requires therefore a model that allows for the treatment of arbitrary collision frequencies. A

kinetic full-F description is therefore needed for a proper SOL description (Hazeltine, 1998).

Leveraging the development of previous models (Hammett et al., 1993; Dorland & Ham-

mett, 1993; Beer & Hammett, 1996; Sugama et al., 2001; Ji & Held, 2010; Zocco & Schekochihin,

2011; Schekochihin et al., 2016; Hatch et al., 2016; Parker, 2015; Hirvijoki et al., 2016; Mandell

et al., 2018), we construct here a moment-hierarchy to evolve the SOL plasma dynamics. Our

model is valid in arbitrary magnetic field geometries and, making use of the full Coulomb

collision operator, at arbitrary collision frequencies. The model is derived within a full-F

framework, as the amplitude of the background and fluctuating components of the plasma

parameters in the SOL have comparable amplitude. We work within the drift approximation

(Hinton & Hazeltine, 1976; Cary & Brizard, 2009), which assumes that plasma quantities have

typical frequencies that are small compared to the ion gyrofrequencyΩi = eB/mi , and their

perpendicular spatial scale is small compared to the ion sound Larmor radius ρs = cs/Ωi , with

c2
s = Te /mi , Te the electron temperature, B the magnitude of the magnetic field, e the electron

charge, and mi the ion mass.

In this chapter, we use the methods of Lagrangian mechanics to derive the equations of

motion of a charged particle in an electromagnetic field in the drift-kinetic approximation,

that is, when the magnetic field is slowly varying with respect to the gyroradius, and when

fluctuations occur on spatial scales larger than the ion gyroradius. A detailed description

of the drift-kinetic ordering is provided in Section 2.1. In Section 2.2, we derive the drift-

kinetic Lagrangian and state the equations governing the particle position and velocity in the

drift-kinetic approximation, together with the equation for the evolution of the distribution

function, the so-called drift-kinetic equation. The drift-kinetic equation, when coupled to

Maxwell’s equations, yields a system of equations describing the dynamics of the plasma

system that is, in principle, closed. However, the numerical solution of kinetic models such as

the drift-kinetic one still remains computationally extremely demanding. For this reason, the

drift-kinetic equation is converted into a moment-hierarchy equation for the evolution of the

velocity moments of the distribution function fa using a suitable polynomial expansion of fa

i.e., using a Hermite-Laguerre polynomial basis. The expansion of the distribution function in

a Hermite-Laguerre basis is performed in Section 2.3, while the moment-hierarchy equation

is derived in Section 2.4. A shifted-velocity formulation, which retains the presence of a finite
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flow velocity in the Hermite-Laguerre basis and better captures strong near-Maxwellian flows

with fewer expansion coefficients, is used. A particular novelty of the framework derived here

is the inclusion of collisions by evaluating explicitly the velocity moments of the full Coulomb

nonlinear collision operator (the prefix full is used here to state that both like-particle and

unlike-particle collisions are included). This allows us to describe turbulent systems arbitrarily

far from equilibrium using a model that is particularly efficient for numerical implementation.

In Section 2.5, the system of equations is closed by deriving Poisson’s equation in terms of

coefficients of the Hermite-Laguerre expansion of the distribution function. Finally, a a fluid

model based on the truncation of the Hermite-Laguerre expansion in the high collisionality

regime is presented, which allows the comparison to well-known fluid models used to describe

the plasma dynamics in the SOL. The conclusions follow. We note that the results described in

the present chapter have been published in Jorge et al. (2017).

2.1 Ordering

Denoting k⊥ ∼ |∇⊥ logφ| ∼ |∇⊥ logn| ∼ |∇⊥ logTe | and ω ∼ |∂t logφ| ∼ |∂t logn| ∼ |∂t logTe |,
with φ the electrostatic potential, we introduce the drift-kinetic ordering parameter ε such

that1

ε∼ k⊥ρs ∼
k∥
k⊥

¿ 1. (2.1)

On the other hand, we let k⊥Lp ∼ 1 since turbulent eddies are observed to have an extension

comparable to the scale lengths of the time-averaged quantities. These assumptions are in

agreement with experimental measurements of SOL plasmas (LaBombard et al., 2001; Zweben

et al., 2004; Myra et al., 2013; Carralero et al., 2014). We set turbulence to be correlated along

the magnetic field lines by ordering ω∼ k∥cs (see Footnote 1), such that

ω

Ωi
∼ ε2, (2.2)

an ordering in agreement with previous drift-reduced fluid models for the SOL (Zeiler et al.,

1997; Catto & Simakov, 2004). We also order the electron collision frequency νei as

νei

Ωi
∼ εν < ε, (2.3)

In addition, the ion collision frequency νi =νi i is ordered as νi i < ε2Ωi that, noticing νi ∼

1We note that while this ordering differs from the one presented in Jorge et al. (2017), the set of equations
presented to describe SOL plasmas remains unchanged. We also point out that the ordering ω∼ k∥cs may become
marginal near separatrix where k∥ decreases to values below than ω/cs .
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p
me /mi (Te /Ti )3/2νe (with νe = νei ), yields

(εν
ε2

)2/3
(

me

mi

)1/3

.
Ti

Te
. 1. (2.4)

The ordering in Eq. (2.4) can be used to justify applying our model in the cold ion limit,

Ti ¿ Te , but allows for Ti ∼ Te . We note that in the SOL the ratio Ti /Te is typically in the range

1 < Ti /Te < 4 (Kocan et al., 2011). Furthermore, it is seen that the ion temperature in this range

of values plays a negligible role in determining the SOL turbulent dynamics, usually due to a

steeper electron temperature profile compared with the ion one, which is usually below the

threshold limit of the ion temperature gradient instability (Mosetto et al., 2015).

The ordering in Eqs. (2.1)-(2.4) is justified in a wide variety of experimental conditions. For

example, for a typical JET discharge (Erents et al., 2000; Liang et al., 2007; Xu et al., 2009) with

the SOL parameters BT = 2.5 T, Te ∼ Ti ∼ 20 eV, ne ' 1019 m−3, and k⊥ ∼ 1 cm−1, we obtain

εν ∼ 0.016 and ε∼ 0.0182. For a medium-size tokamak such as TCV (Rossel et al., 2012; Nespoli

et al., 2017), estimating BT = 1.5 T, Te ∼ Ti ∼ 40 eV, ne ' 6×1018, and k⊥ ∼ 1 cm−1, we obtain

εν ∼ 6.2×10−3 and ε∼ 0.043. Finally, for small-size tokamaks such as ISTTOK (Silva et al., 2011;

Jorge et al., 2016), with BT = 0.5 T, Te ∼ Ti ∼ 20 eV, ne ' 0.8×1018, and k⊥ ∼ 1 cm−1, we obtain

εν ∼ 0.0072 and ε∼ 0.091. Lower values of εν, as in the presence of ELMs where temperatures

can reach up to 100 eV (Pitts et al., 2003), are also included in the ordering considered here.

We note that the orderings in Eqs. (2.1) to (2.3) imply that

k∥λm f p ∼
√

mi

me

ε2

εν
, (2.5)

which includes both the collisional regime k∥λm f p ¿ 1, when εν ∼ ε, and the collisionless

regime (k∥λm f p )−1 ¿ 1, when εν ¿ ε. Finally, the plasma parameter β = nTe /(B 2/2µ0) is

ordered as β∼ ε3, implying that our equations describe plasma dynamics in an electrostatic

regime. Although electromagnetic effects can lead to a non-negligible enhancement on heat

and particle transport in the SOL (LaBombard et al., 2005), we focus on devices with low-

enough β such that the value of the MHD ballooning parameter αMHD =βR/Lp stays below

the electromagnetic balloning instability threshold. We refer the reader to Halpern et al.

(2013a) for a detailed treatment of electromagnetic effects in the SOL within the drift-reduced

fluid description and here we consider the electrostatic limit.

16



2.2. SOL Guiding-Center Model

2.2 SOL Guiding-Center Model

2.2.1 Single-Particle Motion

To derive a convenient equation of motion in the presence of a strong magnetic field B, we

start with the Hamiltonian of a charged particle of species a (Jackson, 1998),

Ha(q,p) = [p−qaA(q)]2

2ma
+qaφ(q), (2.6)

and its associated Lagrangian,

La(x,v) = [
qaA(x)+mav

] · ẋ−
[

ma v2

2
+qaφ(x)

]
, (2.7)

where p = qaA+mav is the canonical momentum conjugated to q = x, v is the particle velocity,

A is the magnetic vector potential,φ is the electrostatic potential, ma is the mass of the particle

and qa its charge.

We now perform a coordinate transformation from the phase-space coordinates z = (x,v)

to the guiding-center coordinates Z = (R, v∥,µ,θ) by writing the particle velocity as [see, e.g.,

Littlejohn (1983)]

v = U+ v ′
⊥c, (2.8)

with

U = vE (R)+ v∥b(R), (2.9)

and vE = E×B/B 2 the E×B velocity. The gyroangle θ, defined as

θ = tan−1
[

(v−U) ·e2

(v−U) ·e1

]
(2.10)

is introduced by defining the right-handed coordinate set (e1,e2,b), such that c = −a×b =
da(θ)/dθ, with a = cosθe1 + sinθe2. The decomposition in Eq. (2.8) allows us to isolate the

high-frequency gyromotion contained in the v ′
⊥c term, from the dominant guiding-center

velocity U. The adiabatic invariant µ is defined as

µ= ma v
′2
⊥

2B
(2.11)

whereas the guiding-center position is

R = x−ρaa, (2.12)

with ρa =
√

2maµ/(q2
aB) the Larmor radius. Incidentally, for the case of weakly varying
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magnetic fields, Eq. (2.12) describes the circular motion of a particle around its guiding-center

R with radius ρa , i.e., (x−R)2 = ρ2
a .

As our goal is to develop a model that describes turbulent fluctuations occurring on

a spatial scale longer than the sound Larmor radius ρs , and a time scale larger than the

gyromotion one, we keep terms in the Lagrangian up to O(ε) and order Ti ∼ Te , which implies

k⊥ρi ∼ ε. (2.13)

We therefore expand the electromagnetic fields around R, to first order in ε, i.e.,

φ(x) 'φ(R)+ρaa ·∇Rφ(R), (2.14)

and similarly for A. In the following, if not specified, the electromagnetic fields and potentials

are evaluated at the guiding-center position R, and we denote ∇ = ∇R. In addition, to take

advantage of the difference between the turbulent and gyromotion time scales, we use the gy-

roaveraged Lagrangian 〈La〉R to evaluate the plasma particle motion, where the gyroaveraging

operator 〈χ〉R acting on a quantity χ(θ) is defined as

〈χ〉R = 1

2π

∫ 2π

0
χ(θ)dθ, (2.15)

which is performed at fixed guiding-center coordinates R, v∥ and µ.

To evaluate 〈La〉R we note that, with the expansion for φ and A, the Lagrangian in Eq. (2.7)

can be expressed as La = L0a +L1a + L̃a where L0a is gyroangle independent,

L0a = (
qaA+maU

) · Ṙ−
(

ma v2
∥

2
+ ma v2

E

2
+µB +qaφ

)
, (2.16)

L1a is proportional to ρ2
a (and hence to µ) and is order ε0

L1a = ρ2
a qa θ̇ (a ·∇) (A ·c)+maρ

2
aΩθ̇+ρa ρ̇a

[
qa (a ·∇) (A ·a)

]
, (2.17)

and the L̃a contribution contains the terms linearly proportional to cosθ or sinθ (Cary &

Brizard, 2009) which are not present in 〈La〉R, as 〈L̃a〉R = 0.

We note that 〈L1a〉R can be simplified since 〈(a ·∇)A ·c〉R =−b·(∇×A)/2, and 〈(a ·∇)A ·a〉R =
∇⊥ ·A/2. Subtracting the total derivative −qad/d t (ρ2

a∇⊥A)/4 from 〈La〉R, which does not alter

the resulting equations of motion, we redefine the gyroaveraged Lagrangian as

〈La〉R = (
qaA+maU

) · Ṙ−
(

ma v2
∥

2
+ ma v2

E

2
+qaφ

)
−µB

(
1− θ̇

Ωa

)
− ρ2

a

4

d

d t

[∇⊥ · (qaA
)]

.

(2.18)

We now order the terms appearing in 〈La〉R. As imposed by the Bohm sheath conditions
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(Stangeby, 2000), both electrons and ions stream along the field lines with parallel veloc-

ities comparable to the sound speed cs = p
Te /mi in the SOL. The Bohm boundary con-

ditions at the sheath also set the electrostatic potential eφ ∼ ΛTe across the SOL, where

Λ= ln
p

mi /(me 2π) ' 3. Therefore, we keep the ma v2
E /2 term in the Lagrangian in Eq. (2.18),

as to take into account the presence of the numerically large factorΛ2 in v2
E ∼ ε2Λ2c2

s .

By neglecting the higher-order terms in Eq. (2.18), i.e., −(ρ2
a/4)d

[∇⊥ · (qaA
)]

/d t , the

expression for the gyroaveraged Lagrangian describing SOL single-particle dynamics, up to

O(ε), can be written as

〈La〉R = qaA∗ · Ṙ−qaφ
∗−

ma v2
∥

2
+µma θ̇

qa
. (2.19)

where

qaφ
∗ = qaφ+ma v2

E /2+µB (2.20)

and

qaA∗ = qaA+ma v∥b+mavE . (2.21)

The Euler-Lagrange equations applied to the Lagrangian in Eq. (2.19) for the coordinates θ, v∥,

and µ, yield, respectively, µ̇= 0, v∥ = b · Ṙ, and θ̇ =Ωa . For the R coordinate, we obtain

ma v̇∥b = qa(E∗+ Ṙ×B∗), (2.22)

where the relation [∇A−(∇A)T ]·Ṙ = Ṙ×(∇×A) has been used, and we defined E∗ =−∇φ∗−∂t A∗,

and B∗ =∇×A∗, with the parallel component of B∗ given by

B∗
∥ = B∗ ·b = B + ma

qa
b ·∇× (

v∥b+vE
)

. (2.23)

By projecting Eq. (2.22) along B∗, we derive mv̇∥B∗
∥ = eE∗ ·B∗, while crossing with b yields the

guiding-center velocity ṘB∗
∥ = v∥B∗+E∗×B/B . Using the expressions for the fields E∗ and B∗,

we obtain

Ṙ = U+ B

ΩaB∗
∥
×

(
dU

d t
+ µ∇B

ma

)
, (2.24)

and

ma v̇∥ = qaE∥−µ∇∥B +mavE · db

d t
−maA , (2.25)

In Eqs. (2.24) and (2.25), in addition to the time derivatives of the phase-space coordinates

Ṙ, v̇∥, that only have an explicit time dependence, we define the total derivative d/d t of a field
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φ(R, t ) that has an explicit time and R dependence as

dφ

d t
= ∂φ

∂t
+U ·∇φ. (2.26)

The A term represents the higher-order nonlinear terms in v̇∥ that ensure phase-space con-

servation properties (Cary & Brizard, 2009), and it is given by

A = B

B∗
∥

(
dU

d t

∣∣∣∣⊥+µ∇⊥B

)
· ∇×U

Ωa
, (2.27)

with dt U|⊥ =−b× (b×dt U).

The guiding-center equations of motion (2.24) and (2.25) satisfy the energy, Eg c = qaφ
∗+

ma v2
∥/2 (Cary & Brizard, 2009), and momentum, Pg c = eA∗ (Cary & Brizard, 2009), conserva-

tion laws, given by

dEg c

d t
= qa

∂φ∗

∂t
−qa

∂A∗

∂t
· Ṙ, (2.28)

and

∂Pg c

∂t
=−qa∇φ∗+qa∇A∗ · Ṙ. (2.29)

In addition, we note that using Eqs. (2.24) and (2.25) and Maxwell’s equations, a conservation

equation for B∗
∥ can be derived

∂B∗
∥

∂t
+∇· (ṘB∗

∥ )+ ∂

∂v∥

(
v̇∥B∗

∥
)
= 0. (2.30)

Since B∗
∥ is the Jacobian of the guiding-center transformation, Eq. (2.30) is in fact the phase-

space volume conservation law for the guiding-center system of equations (also called Liou-

ville’s theorem), reflecting therefore their Hamiltonian nature.

2.2.2 The Guiding-Center Boltzmann Equation

The Boltzmann equation for the evolution of the distribution function fa(x,v) of the particles

in (x,v) coordinates is

∂ fa

∂t
+ ẋ ·∇x fa + v̇ ·∇v fa =C ( fa), (2.31)

where C ( fa) = ∑
b C ( fa , fb) = ∑

b Cab is the collision operator. Because fa can significantly

deviate from a Maxwellian distribution function in the SOL (Battaglia et al., 2014), we consider

the bilinear Coulomb operator Cab (Balescu, 1988), to model collisions between particles of
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species a and b

Cab = Lab
∂

∂vi

[
∂2Gb

∂vi∂v j

∂ fa

∂v j
− ma

mb

∂Hb

∂vi
fa

]
, (2.32)

with

Hb = 2
∫

fb(v′)
|v−v′|dv′, (2.33)

and

Gb =
∫

fb(v′)|v−v′|dv′, (2.34)

the Rosenbluth potentials satisfying∇2
vGb = Hb . In Eq. (2.32) we introduced Lab = q2

a q2
bλ/(4πε2

0m2
a) =

νab v3
tha/nb , where λ is the Coulomb logarithm, νab the collision frequency between species a

and b, and v2
tha = 2Ta/ma .

Taking advantage of the small electron to ion mass ratio, the collision operator between

unlike-species can be simplified [see, e.g. Balescu (1988); Helander & Sigmar (2005)]. The

electron-ion collision operator, to first order in me /mi , is given by the operator Cei ( fe ) =
C 0

ei +C 1
ei , where C 0

ei is the Lorentz pitch-angle scattering operator

C 0
ei =

ni Lei

v3
the

∂

∂ce
·
[

1

ce

∂ fe

∂ce
− ce

c3
e

(
ce · ∂ fe

∂ce

)]
, (2.35)

and C 1
ei the momentum-conserving term

C 1
ei =

2ni Lei

v4
the c3

e
fMe ui ·ce . (2.36)

with ca = (v−ua)/vtha . Ion-electron collisions, to first order in me /mi , are desribed using the

operator

Ci e = Rei

mi ni vthi
· ∂ fi

∂ci
+νei

ne

ni

me

mi

∂

∂ci
·
(

ci fi + Te

Ti

∂ fi

∂ci

)
, (2.37)

where Rei =
∫

me vCei dv is the electron-ion friction force. We take advantage of Eq. (2.3) to

order the electron collision frequency νe and the ion collision frequency νi as

νi

Ωi
∼

√
me

mi

(
Te

Ti

)3/2

εν < ε2, (2.38)

where we used the relation νi ∼
p

me /mi (Te /Ti )3/2νe . The orderings in Eqs. (2.14) and (2.38)

yield the lower bound in Eq. (2.4) for the ion to electron temperature ratio.

We now express the particle distribution function fa in terms of the guiding-center coordi-
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nates by defining Fa , a function of guiding-center coordinates, as

Fa(R, v∥,µ,θ) = fa(x(R, v∥,µ,θ),v(R, v∥,µ,θ)). (2.39)

Using the chain rule to rewrite Eq. (2.31) in guiding-center coordinates, we obtain

∂Fa

∂t
+ Ṙ ·∇Fa + v̇∥

∂Fa

∂v∥
+ µ̇∂Fa

∂µ
+ θ̇ ∂Fa

∂θ
=C (Fa), (2.40)

where Ṙ and v̇∥ are given by Eq. (2.24) and Eq. (2.25) respectively, θ̇ =Ωa , and µ̇= 0. Equation

(2.40) can be simplified by applying the gyroaveraging operator in Eq. (2.15). This results in

the drift-kinetic equation

∂〈Fa〉R

∂t
+ Ṙ ·∇〈Fa〉R + v̇∥

∂〈Fa〉R

∂v∥
= 〈C (Fa)〉R . (2.41)

We now write Eq. (2.41) in a form useful to take gyrofluid moments of the form
∫ 〈Fa〉R Bd v∥dµdθ

(see Section 2.4). Using the conservation law in Eq. (2.30) for B∗
∥ , we can write the guiding-

center Boltzmann equation in conservative form as

∂(B∗
∥ 〈Fa〉R)

∂t
+∇· (ṘB∗

∥ 〈Fa〉R)+
∂(v̇∥aB∗

∥ 〈Fa〉R)

∂v∥
= B∗

∥ 〈C (Fa)〉R . (2.42)

Moreover, in order to relate the gyrofluid moments
∫ 〈Fa〉R Bd v∥dµdθ with the usual fluid

moments
∫

fad 3v , we estimate the order of magnitude of the gyrophase dependent part of

the distribution function F̃a = Fa −〈Fa〉R where 〈Fa〉R obeys Eq. (2.41). The equation for the

evolution of F̃a is obtained by subtracting Eq. (2.41) from the Boltzmann equation, Eq. (2.40),

that is

∂F̃a

∂t
+ Ṙ ·∇F̃a + v̇∥

∂F̃a

∂v∥
+Ωa

∂F̃a

∂θ
=C (Fa)−〈C (Fa)〉R . (2.43)

Using the orderings in Eqs. (2.3) and (2.38), as well as ∂t ∼ Ṙ·∇ ∼ v̇∥∂v∥ ∼ εΩi and ∂θ ∼ 1, the

comparison of the leading-order term on the left-hand side of Eq. (2.43) with the right-hand

side of the same equation imply the following ordering for F̃e

F̃e

〈Fe〉R
∼ me

mi
εν < ε2, (2.44)

and F̃i

F̃i

〈Fi 〉R
∼

√
me

mi

(
Te

Ti

)3/2

εν < ε2. (2.45)

To evaluate the leading-order term of F̃a , we expand the collision operator C (Fa) =C0(〈Fa〉R)+
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εC1(Fa)+ ..., such that

F̃a ' 1

Ωa

∫ θ

0

[
C0(〈Fa〉R)−〈C0(〈Fa〉R)〉R

]
dθ′+O(ε3 〈Fa〉R). (2.46)

The relation in Eq. (2.46) can be further simplified by expanding the θ dependence of Fa in

Fourier harmonics,

Fa =∑
m

e i mθFma , (2.47)

so that for m = 0 we have 〈Fa〉R = F0a , and similarly for C0(〈Fa〉R)

C0(〈Fa〉R) =∑
m′

e i m′θCm′a . (2.48)

We can then write Eq. (2.46) as

F̃ma = Cma

i mΩa
, (2.49)

for m 6= 0.

2.3 Moment Expansion

We now derive a polynomial expansion for the distribution function 〈Fa〉R that simplifies

the solution of Eq. (2.42), with the collision operators in Eqs. (2.32) - (2.37). This section

is organized as follows. In Section 2.3.1 the Hermite-Laguerre basis is introduced, relating

the corresponding expansion coefficients for 〈Fa〉R with its usual gyrofluid moments. In

Section 2.3.2, we briefly review the fluid moment expansion of the Coulomb collision operator

presented in Ji & Held (2006, 2008). In Section 2.3.3, leveraging the work in Ji & Held (2006,

2008), we expand Cab in terms of the product of the gyrofluid moments, for both like- and

unlike-species collisions which, ultimately, allows us to solve Eq. (2.42) in terms of gyrofluid

moments.

2.3.1 Guiding-Center Moment Expansion of 〈Fa〉R

To take advantage of the anisotropy introduced by a strong magnetic field, and efficiently

treat the left-hand side of Eq. (2.42) where the parallel and perpendicular directions appear

decoupled, we express 〈Fa〉R by using a Hermite polynomial basis expansion for the parallel

velocity coordinate (Grad, 1949; Armstrong, 1967; Grant & Feix, 1967; Ng et al., 1999; Zocco

& Schekochihin, 2011; Loureiro et al., 2013; Parker & Dellar, 2015; Schekochihin et al., 2016;

Tassi, 2016) and a Laguerre polynomial basis for the perpendicular velocity coordinate (Zocco

et al., 2015; Omotani et al., 2015; Mandell et al., 2018). More precisely, we use the following
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expansion

〈Fa〉R =
∞∑

p, j=0

N p j
a√

2p p !
FM a Hp (s∥a)L j (s2

⊥a), (2.50)

where the physicists’ Hermite polynomials Hp of order p are defined by the Rodrigues’ formula

(Abramowitz et al., 1965)

Hp (x) = (−1)p ex2 d p

d xp e−x2
, (2.51)

and normalized via∫ ∞

−∞
d xHp (x)Hp ′(x)e−x2 = 2p p !

p
πδpp ′ , (2.52)

and the Laguerre polynomials L j of order j are defined by the Rodrigues’ formula (Abramowitz

et al., 1965)

L j (x) = ex

j !

d j

d x j
(e−x x j ), (2.53)

which are orthonormal with respect to the weight e−x

∫ ∞

0
d xL j (x)L j ′(x)e−x = δ j j ′ . (2.54)

Because of the orthogonality of the Hermite-Laguerre basis, the coefficients N p j
a of the expan-

sion in Eq. (2.50) are

N p j
a = 1

Na

∫ Hp (s∥a)L j (s2
⊥a)〈Fa〉R√

2p p !

B

ma
dµd v∥dθ, (2.55)

and correspond to the guiding-center moments of 〈Fa〉R.

In Eq. (2.50), the shifted bi-Maxwellian is introduced

FM a = Na
e−s2

∥a−s2
⊥a

π3/2vth∥a v2
th⊥a

, (2.56)

where s∥a and s⊥a are the normalized parallel and perpendicular shifted velocities respectively,

defined by

s∥a = v∥−u∥a

vth∥a
, v2

th∥a = 2T∥a

ma
, (2.57)

24



2.3. Moment Expansion

and

s2
⊥a = v

′2
⊥

v2
th⊥a

= µB

T⊥a
, v2

th⊥a = 2T⊥a

ma
, (2.58)

which provide an efficient representation of the distribution function in both the weak (u∥a ¿
vtha) and strong flow (u∥a ∼ vtha) regimes by better capturing strong near-Maxwellian flows

with fewer expansion coefficients (Hirvijoki et al., 2016).

The guiding-center density Na , appearing in Eq. (2.56), the guiding-center fluid velocity

u∥a , in Eq. (2.57), and the guiding-center parallel T∥a = P∥a/Na and perpendicular T⊥a =
P⊥a/Na temperatures in Eqs. (2.57) and (2.58) are defined as Na = ||1||a , Nau∥a = ||v∥||a ,

P∥a = ma ||(v∥−u∥a)2||a , and P⊥a = ||µB ||a , where

||χ||a ≡
∫
χ〈Fa〉R

B

ma
dµd v∥dθ. (2.59)

The definition of Na , u∥a , P∥a , and P⊥a implies that N 00
a = 1, N 10

a = 0, N 20
a = 0, N 01

a = 0,

respectively. Later, we will consider the parallel and perpendicular heat fluxes, defined as

Q∥a = ma ||(v∥−u∥a)3||a , Q⊥a = ||(v∥−u∥a)µB ||a , (2.60)

which are related to the coefficients N 30
a and N 11

a by

N 30
a = Q∥ap

3P∥a vtha∥
, N 11

a =−
p

2Q⊥a

P⊥a vtha∥
. (2.61)

2.3.2 Fluid Moment Expansion of the Collision Operator

A polynomial expansion of the nonlinear Coulomb collision operator in Eq. (2.32) was carried

out in Ji & Held (2009), while the treatment of finite fluid velocity and unlike-species collisions

is described in Ji & Held (2008). This allowed expressing Cab as products of fluid moments

of fa and fb . We summarize here the main steps of Ji & Held (2006, 2008). For an alternative

derivation of the fluid moment expansion in terms of multipole moments of the Coulomb

operator, see Chapter 4.

Similarly to Eq. (2.50), the particle distribution function fa is expanded as

fa = faM

∞∑
l ,k=0

Ll+1/2
k (c2

a)Pl (ca) ·Ma
lk√

σl
k

, (2.62)

where

faM = na

π3/2v3
tha

e−c2
a (2.63)

25



Chapter 2. A Drift-Kinetic Model for Scrape-off Layer Plasma Dynamics

is a shifted Maxwell-Boltzmann distribution function, and ca the shifted velocity defined as

ca = (v−Ua)/vtha , with Ua = u∥ab+u⊥a the fluid velocity. The fluid variables na ,Ua , and Ta

are defined as the usual moments of the particle distribution function fa , i.e. na = ∫
fad 3v,

naUa = ∫
favd 3v , naTa = ∫

m fa(v−ua)2d 3v/3.

The tensors Pl k
a (ca) = Pl (ca)Ll+1/2

k (c2
a) constitute an orthogonal basis, where Pl (ca) is the

symmetric and traceless tensor

Pl (ca) =
bl /2c∑
i=0

d l
i Sl

i c2i
a

{
Ii ĉ l−2i

a

}
, (2.64)

with I denoting the identity matrix, {Ai } denoting the symmetrization of the tensor Ai , bl/2c
denoting the largest integer less than or equal to l /2, and the coefficients d l

i and Sl
i defined by

d l
i =

(−2)i (2l −2i )!l !

(2l )!(l − i )!
, (2.65)

and

Sl
i =

l !

(l −2i )!2i i !
. (2.66)

The tensor Pl (ca) is can be also computed using the recursion relation

Pl+1(c) = cPl (c)− c2

2l +1

∂Pl (c)

∂c
(2.67)

and is normalized via∫
dvPn(v)Pl (v) ·Ml g (v) = Mnδn,lσn

∫
dvv2n g (v), (2.68)

with σl = l !/[2l (l +1/2)!]. We note that the tensor Ai is formed by i multiplications of the A

elements (e.g., if A is a rank-2 tensor, A3 ≡ AAA, which in index notation can be written as

(A3)i j lkmn = Ai j Alk Amn).

In the expansion in Eq. (2.62), Ll+1/2
k (x) are the associated Laguerre polynomials

Ll+1/2
k (x) =

k∑
m=0

Ll
km xm , (2.69)

normalized via∫ ∞

0
e−x x l+1/2Ll+1/2

k (x)Ll+1/2
k ′ (x)d x =λl

kδk,k ′ . (2.70)

with λl
k = (l +k +1/2)!/k ! and Ll

km = [(−1)m(l +k +1/2)!]/[(k −m)!(l +m +1/2)!m!]. The σl
k =

σlλ
l
k term is a normalization factor from the orthogonality relations in Eqs. (2.68) and (2.70).
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Finally, the coefficients of the expansion in Eq. (2.62) Mlk
a are

Mlk
a = 1

na

∫
dv fa

Ll+1/2
k (c2

a)Pl (ca)√
σl

k

, (2.71)

which correspond to the moments of fa due to the orthogonality relations in Eqs. (2.68)

and (2.70).

By using the expansion in Eq. (2.62) in the collision operator in Eq. (2.32), a closed form

for Cab in terms of products of Mlk
a can be obtained. For like-species collisions it reads

Caa =
∞∑

l ,k=0

∞∑
n,q=0

k∑
m=0

q∑
r=0

Ll
kmLn

qr√
σl

kσ
n
q

c
(

f l km
a , f nqr

a

)
, (2.72)

with

c
(

f lkm
a , f nqr

a

)
= faM

min(2,l ,n)∑
u=0

νl m,nr
∗aau (c2

a)
min(l ,n)−u∑

i=0
d l−u,n−u

i Pl+n−2(i+u)(ĉa) · (Mlk
a ·i+u Mnq

a )T S ,

(2.73)

where ĉa = ca/ca , ·n is the n-fold inner product (e.g., for the matrix A = Ai j , (A ·1 A)i j =∑
k Aki Ak j ), and (A)T S the traceless symmetrization of A (e.g., (A)T S = (Ai j+A j i )/2−δi j

∑
k Akk /3).

We refer the reader to Ji & Held (2009) for the explicit form of the νlm,nr
∗abu coefficients.

2.3.3 Guiding-Center Moment Expansion of the Collision Operator

In order to apply the gyroaveraging operator to the like-species collision operator Caa in

Eq. (2.72), we expand the fluid moments as Ml k
a = Mlk

a0 +εMlk
a1 + ..., aiming at representing the

collision operator up to O(ενε). An analytical expression for the leading-order Mlk
a0 in terms of

guiding-center moments N p j
a can be obtained as follows. By splitting fa = 〈 fa〉R + f̃a when

evaluating the fluid moments Mlk
a according to Eq. (2.71), we obtain

Mlk
a = 1

na

∫
d 3x ′d 3v ′δ(x′−x)

Ll+1/2
k (c

′2
a )Pl (c′a)√
σl

k

(〈 fa〉R + f̃a
)

. (2.74)

where the Dirac delta function was introduced to convert the velocity integral into an (x,v)

integral that encompasses the full phase-space. Since the volume element in phase space can

be written as d 3xd 3v = (B∗
∥ /m)dRd v∥dµdθ (Cary & Brizard, 2009), and defining x′ = R+ρaa,

we can write the fluid moments in Eq. (2.74) as

Mlk
a = 1

na

∫
dRd v∥dµdθ

B∗
∥

ma
δ(x−R−ρaa)

Ll+1/2
k (c

′2
a )Pl (c′a)√
σl

k

(〈Fa〉R + F̃a
)

. (2.75)
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where 〈 fa〉R and f̃a in Eq. (2.74) are written in terms of guiding-center coordinates using

Eq. (2.39). Neglecting the higher-order ρa and F̃a terms, the leading-order fluid moments Mlk
a0

are given by

Mlk
a0 =

1

na

∫
d v∥dµdθ

B∗
∥

ma

Ll+1/2
k (c

′2
a )Pl (c′a)√
σl

k

〈Fa〉R . (2.76)

The θ integration can be performed by making use of the gyroaveraging formula of the Pl

tensor

〈Pl (ca)〉R = c l
aPl (ξa)Pl (b), (2.77)

where ξa = ca ·b/ca is the pitch angle velocity coordinate, and Pl is a Legendre polynomial

defined by

Pl (x) = 1

2l l !

d l

d x l

[
(x2 −1)l

]
, (2.78)

and normalized via∫ 1

−1
Pl (x)Pl ′(x)d x = δl l ′

l +1/2
, (2.79)

yielding

Mlk
a0 =

Pl (b)

na

∫
d v∥dµdθ

B∗
∥

ma

Ll+1/2
k (c

′2
a )c l

aPl (ξa)√
σl

k

〈Fa〉R . (2.80)

For the derivation of Eq. (2.77), see Section 4.3. Finally, we use the basis transformation

c l
aPl (ξa)Ll+1/2

k (c2
a) =

l+2k∑
p=0

k+bl /2c∑
j=0

T p j
al k Hp (s∥a)L j (s2

⊥a), (2.81)

with the inverse

Hp (s∥a)L j (s2
⊥a) =

p+2 j∑
l=0

j+bp/2c∑
k=0

(
T −1

a

)lk
p j c l

aPl (ξa)Ll+1/2
k (c2

a), (2.82)

to obtain an expression for the integrand in Eq. (2.80) in terms of the Hermite-Laguerre basis. A

numerical evaluation of T p j
al k and

(
T −1

a

)l k
p j was carried out in Omotani et al. (2015). Instead, in

Appendix A, we derive the analytic expressions of both T p j
al k and

(
T −1

a

)l k
p j . Using the definition

of guiding-center moments N p j
a in Eq. (2.55), the leading-order fluid moment Mlk

a0 is then

given by

naMl k
a0 = NaPl (b)N l k

a , (2.83)
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where we define

N lk
a =

l+2k∑
p=0

k+bl /2c∑
j=0

T p j
al k N p j

a

√
2p p !

σl
k

. (2.84)

The leading-order part Caa0 of the collision operator Caa can be calculated by approximat-

ing Mlk
a appearing in Eq. (2.73) with Ml k

a0. For the ions, the largest contribution to Ml k
i −Mlk

i 0 is

of order ε and it is given by the ρi appearing in Eq. (2.75) [the F̃i correction is smaller since

F̃i < ε2 〈Fi 〉R, see Eq. (2.45)]. Therefore, by using the ordering in Eq. (2.38), the largest correc-

tion to Ci i 0 is O(
p

me /mi εεν). The correction to Cee0 is of the same order. It follows that we

can approximate Caa appearing in Eq. (2.73) with Caa0 to represent the collision operator up

to O(ενε).

As an aside, we note that the relationship between the guiding-center and fluid moments

in Eq. (2.83) provides, for the indices (l ,k) = (0,0),

na = Na , (2.85)

while, for (l ,k) = (0,1), yields

Ta = T∥a +2T⊥a

3
. (2.86)

Moreover, the (l ,k) = (2,0) moment provides a relationship useful to express the viscosity

tensorΠa = ∫
(caca − c2

aI) fadv as

Πa = bbN (T∥a −T⊥a), (2.87)

while for (l ,k) = (1,1) gives

qa =
(

Q∥a

2
+Q⊥a

)
b, (2.88)

with qa the heat flux density qa = m
∫

cac2
a fadv/2.

In order to express the Boltzmann equation, Eq. (2.42), in terms of the guiding-center

moments N p j
a , we evaluate the guiding-center moments of 〈Caa〉R which, up to O(ε2), are

given by

C p j
aa = 1

Na

∫
〈Caa0〉R

Hp (s∥a)L j (s2
⊥a)√

2p p !

B

ma
d v∥dµdθ. (2.89)

By using the gyroaveraging property of Pl (ca) in Eq. (2.77) in the like-species operator in

Eqs. (2.72) and (2.73) (with Mlk
a = Mlk

a0), and the relation between Ml k
a0 and N p j

a in Eq. (2.83),
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the gyroaveraged collision operator coefficients 〈c (
f l km

a , f nqr
a

)〉R are given by

〈c( f lkm
a , f nqr

a )〉R = faM

min(2,l ,n)∑
u=0

νl m,nr
∗aau (c2

a)
min(l ,n)−u∑

i=0
d l−u,n−u

i Pl+n−2(i+u)(ξ)N l k
a N

nq
a P l ,n

i+u ,

(2.90)

with P l ,n
i+u = Pl+n−2(i+u) · (Pl ·i+u Pn)T S . Using the basis transformation of Eq. (2.82) to ex-

press Hp (s∥a)L j (s2
⊥a) in Eq. (2.89) in terms of c l

aPl (ξa)Ll+1/2
k (c2

a), and performing the resulting

integral, we obtain

C p j
aa =∑

l ,k

∑
n,q

min(2,l ,n)∑
u=0

min(l ,n)−u∑
i=0

p+2 j∑
e=0

j+bp/2c∑
f =0

f∑
g=0

k∑
m=0

q∑
r=0

Ll
kmLn

qr Le
f g d l−u,n−u

i√
σl

kσ
n
q (e +1/2)4π

C eg ,lm,nr
∗aau√

2p p !
δe,l+n−2(i+u)

(
T −1)e f

p j N
l k

a N
nq

a P l ,n
i+u ,

(2.91)

with C j w,lm,nr
∗aabu = ∫

dvc2w+ j
a fM aν

lm,nr
∗aau [for an efficient algorithmic representation of C j w,lm,nr

∗aabu
see Ji & Held (2009)].

We now turn to the electron-ion collision operator, Cei = C 0
ei +C 1

ei , with C 0
ei given by

Eq. (2.35) and C 1
ei given by Eq. (2.36). As the basis Ll+1/2

k Pl (ca) is an eigenfunction of the

Lorentz pitch-angle scattering operator C 0
ei with eigenvalue −l (l +1) (Ji & Held, 2008), we write

C 0
ei as

C 0
ei =−∑

l ,k

ni Lei

v3
the c3

e

l (l +1) feM√
σl

k

Ll+1/2
k (c2

e )Pl (ce ) ·Me
lk . (2.92)

Similarly to like-species collisions, we approximate Mlk
e ' Mlk

e0 in Eq. (2.92), representing C 0
ei

accurately up to O(ενε). Using the basis transformation in Eq. (2.82) and the gyroaverage

property of Pl (ca) in Eq. (2.77), we take guiding-center moments of Cei of the form (2.89), and

obtain

C p j
ei =− νei

8π3/2

p+2 j∑
l=0

j+bp/2c∑
f =0

(
T −1

e

)l f
p j√

2p p !

[ ∞∑
k=0

Al f ,k
ei N l k

e −δl ,1
u∥i

vthe

16

3

Γ( f +3/2)

f !
p
π

]
, (2.93)

where the Aei coefficients are given by

Al f ,k
ei ,0 = l (l +1)

l +1/2

(l !)22l

(2l )!

f∑
m=0

k∑
n=0

Ll
f mLl

kn√
σl

k

(l +m +n −1)!, (2.94)

where we used the identity |Pl (b)|2 = 2l (l !)2/(2l )! (Snider, 2017).

Finally, for the ion-electron collision operator, Ci e , we neglect O(
p

me /mi ενε) corrections
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2.4. Drift-Kinetic Moment-Hierarchy

by approximating Fi ' 〈Fi 〉R, and use the transformation in Eq. (2.8) to convert the Ci e operator

in Eq. (2.37) to guiding-center variables, yielding

Ci e = Rei

mi ni vthi
·
[

c⊥
mi v2

thi

B

∂〈Fi 〉R

∂µ
+b

∂〈Fi 〉R

∂c∥i

]
+νei

me

mi

ne

ni

[
3〈Fi 〉R

+c∥i
∂〈Fi 〉R

∂c∥i
+2µ

∂〈Fi 〉R

∂µ
+ Te

2Ti

∂2 〈Fi 〉R

∂c2
∥i

+ 2Te

B

∂

∂µ

(
µ
∂〈Fi 〉R

∂µ

)]
. (2.95)

By evaluating Rei at the guiding-center position R (neglecting higher order ε effects), we write

Rei ·b = Ne me vth∥eC 10
ei /

p
2+O(

p
me /mi ενε) and gyroaverage Eq. (2.95), yielding

〈Ci e〉R = C 10
eip
2

me

mi

Ne

ni

vth∥e

vth∥i

∂〈Fi 〉R

∂s∥
+νei

me

mi

ne

ni

[
3〈Fi 〉R

+s∥i
∂〈Fi 〉R

∂s∥i
+2µ

∂〈Fi 〉R

∂µ
+ Te

2T∥i

∂2 〈Fi 〉R

∂s2
∥i

+ 2Te

B

∂

∂µ

(
µ
∂〈Fi 〉R

∂µ

)]
,

(2.96)

where we used c2
∥i = s2

∥i T∥i /Ti . Taking guiding-center moments of the form (2.89) of 〈Ci e〉R in

Eq. (2.96), we obtain

C p j
i e = νei

me

mi

∑
l k

B p j
l k N lk

i , (2.97)

with

B p j
l k = 2 jδl pδk j−1

(
1− Te

T⊥i

)
−p

p
vth∥e

vth∥i

C 10
ei

νei
δl p−1δk j

− (p +2 j )δl pδk j +
√

p(p −1)δl p−2δk j

(
Te

T∥i
−1

)
.

(2.98)

2.4 Drift-Kinetic Moment-Hierarchy

In this section, we derive a set of equations that describe the evolution of the guiding-center

moments N p j
a , by integrating in guiding-center velocity space the conservative form of the

Boltzmann equation, Eq. (2.42), with the weights Hp (s∥a)L j (s2
⊥a). First, we highlight the

dependence of Ṙ and v̇∥ on s∥a and s2
⊥a by rewriting the equations of motion as

Ṙ = U0a +U∗
pa + s2

⊥aU∗
∇B a + s2

∥aU∗
ka + s∥a(vth∥ab+U∗th

pa ), (2.99)

and

ma v̇∥ = F∥a − s2
⊥aFM a + s∥aF th

pa −maA . (2.100)

In Eqs. (2.99) and (2.100), U0a = vE +u∥ab is the lowest-order guiding-center fluid veloc-

ity, U∗
∇B a = (T⊥a/ma)(b ×∇B/Ω∗

aB) is the fluid grad-B drift, with Ω∗
a = qaB∗

∥ /ma , U∗
ka =
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(2T∥a/ma)(b×k/Ω∗
a) is the fluid curvature drift with k = b · ∇b, U∗

pa = (b/Ω∗
a)×d0U0a/d t

is the fluid polarization drift, F∥a = qaE∥+mavE ·d0b/d t , FM a = T⊥a∇∥ lnB is the fluid mirror

force, and both U∗th
pa and F th

pa are related to gradients of the electromagnetic fields

U∗th
pa = vth∥a

b

Ω∗
a
× (

b ·∇vE +vE ·∇b+2u∥ak
)

,

F th
pa = ma vth∥aE ·

(
b×k

B

)
.

(2.101)

The fluid convective derivative operator is defined as

d0a

d t
= ∂t +U0a ·∇. (2.102)

Next, to obtain an equation for the moment N p j
a , we apply the guiding-center moment

operator

||χ||∗p j
a = 1

NaB
||χHp (s∥a)L j (s2

⊥a)B∗
∥ ||

= 1

Na

∫
χ

B∗
∥

ma
〈Fa〉R

Hp (s∥a)L j (s2
⊥a)√

2p p !
d v∥dµdθ,

(2.103)

to Boltzmann’s equation, Eq. (2.42). By defining ||1||∗p j
a = N∗p j

a such that

N∗p j
a = N p j

a

(
1+ b ·∇×vE

Ωa
+u∥a

b ·∇×b

Ωa

)
+ vth∥a

b ·∇×bp
2Ωa

(√
p +1N p+1 j

a +p
pN p−1 j

a

)
,

(2.104)

and

d∗p j
a

d t
= N∗p j

a
∂

∂t
+ ∣∣∣∣Ṙ∣∣∣∣∗p j

a ·∇, (2.105)

the drift-kinetic moment-hierarchy conservation equation for species a is

∂N∗p j
a

∂t
+∇· ∣∣∣∣Ṙ∣∣∣∣∗p j

a −
√

2p

vth∥a

∣∣∣∣v̇∥
∣∣∣∣∗p−1 j

a +F
p j
a =∑

b
C p j

ab , (2.106)

where we define the fluid operator

F
p j
a = d∗p j

a

d t
ln

(
NaT p/2

∥a T j
⊥aB− j

)
+

√
2p

vth∥a

d∗p−1 j u∥a

d t

+
√

p(p −1)

2

d∗p−2 j
a

d t
lnT∥a − j

d∗p j−1
a

d t
ln

(
T⊥a

B

)
,

(2.107)

since it is the key term that describes the evolution of the guiding-center fluid properties
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Na ,u∥a ,P⊥a , and P∥a (see Section 2.6). The guiding-center moments of the particle’s equations

of motion are given by∣∣∣∣Ṙ∣∣∣∣∗p j
a =∑

l ,k

(
U0aδplδ j k + vth∥abV

1p j
l k

)
N∗l k

a

+
(
Upaδplδ j k +Uth

paV
1p j

lk +U∇B aM
p j
lk +UkaV

2p j
lk

)
N l k

a ,

(2.108)

ma
∣∣∣∣v̇∥

∣∣∣∣∗p j
a =∑

l ,k

[
F∥aδp,lδ j ,k +F th

paV
1p j

l k +FM aM
p j
lk

]
N∗lk

a +ma ||A ||∗p j
a . (2.109)

where the phase-mixing operators read

V
1p j

lk =
(√

p +1

2
δp+1,l +

√
p

2
δp−1,l

)
δk, j , (2.110)

V
2p j

lk =
[
δp,l

(
p + 1

2

)
+

√
(p +2)(p +1)

2
δp+2,l +

√
p(p −1)

2
δp−2,l

]
δ j ,k , (2.111)

M
p j
lk = (2 j +1)δp,lδ j ,k − ( j +1)δp,lδ j+1,k − jδp,lδ j−1,k . (2.112)

The expressions of Upa ,U∇Ba ,U th
pa , and Uka are derived from U∗

pa ,U∗
∇B a ,U∗th

pa , and U∗
ka by

replacingΩ∗
a withΩa .

The expression of ||A ||∗p j In Eq. (2.109) is given by

||A ||∗p j
a = 1

NaΩa

∑
l ,k

(
A1aV

3p j
lk + A2aV

2p j
l k + A3aV

1p j
lk

+A4aV
1p ′ j ′

lk M
p j
p ′ j ′ + A5aM

p j
l k + A6aδplδ j k

)
N l k

a ,

(2.113)

with the phase-mixing term

V
3p j

lk =
[√

(p +3)(p +2)(p +1)δp+3,l +3
√

(p +1)3δp+1,l

+3
√

p3δp−1,l +
√

p(p −1)(p −2)δp−3,l

]
δ j ,kp

8
,

(2.114)
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and the coefficients Ai a

A1a = v3
th∥a∇⊥ ·∇×b, (2.115)

A2a = v2
th∥a

[∇⊥ · (u∥a∇×b+∇×vE )+∇×b ·Aa
]

, (2.116)

A3a = vth∥a(u∥a∇×b+∇×vE ) ·Aa + v2
th∥a∇×b ·C, (2.117)

A4a = vth∥a
T⊥

maB
∇⊥B ·∇×b, (2.118)

A5a = T⊥a

maB
∇⊥B · (u∥a∇×b+∇×vE ), (2.119)

A6a = (vth∥au∥a∇×b+∇×vE ) ·C (2.120)

with

Aa = b ×
[
∂b

∂t
+ (b ·∇)vE + (vE ·∇)b+2u∥a vth∥ak

]
×b, (2.121)

C = b×
vth∥a

[
∂vE

∂t
+ (vE ·∇)vE +u2

∥ak
]
×b. (2.122)

Similar moment-hierarchy models (with uniform magnetic fields) have been numerically

implemented, and successfully compared with their kinetic counterpart (Paskauskas & De

Ninno, 2009; Loureiro et al., 2016; Schekochihin et al., 2016; Groselj et al., 2017), and even

shown to be more efficient than other velocity discretization techniques in the same region

of validity (Camporeale et al., 2016). Equation (2.106) generalizes such models to spatially

varying fields and full Coulomb collisions, while retaining phase-mixing operators that couple

nearby Hermite and Laguerre moments and providing a close form for the projection of the

Coulomb operator in velocity space. We also note that the use of shifted velocity polynomials

in the Hermite-Laguerre basis, which gives rise to the fluid operator F
p j
a , allows us to have an

efficient representation of the distribution function both in the weak (u∥a ¿ vtha) and strong

flow (u∥a ∼ vtha) regimes. As we will see in Section 2.6, the fluid operator F
p j
a generates the

lowest order fluid equations, as it is present even if all kinetic moments N p j
a (except N 00

a ) are

set to zero.

2.5 Drift-Kinetic Poisson’s Equation

We use Poisson’s equation to evaluate the electric field appearing in the moment-hierarchy

equation, Eq. (2.106). In (x,v) coordinates, Poisson’s equation reads

ε0∇·E =∑
a

qana =∑
a

qa

∫
fad 3v. (2.123)
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Following the same steps used to derive Eq. (2.75) from Eq. (2.71), we can write Poisson’s

equation, Eq. (2.123), as

ε0∇·E =∑
a

qa

∫
d 3Rd v∥dµdθ

B∗
∥

m
δ(R+ρaa−x)Fa(R, v∥,µ,θ). (2.124)

Equation (2.124) shows that all particles that have a Larmor orbit crossing a given point x, give

a contribution to the charge density at this location.

Performing the integral over R and introducing the Fourier transform Fa(x−ρaa, v∥,µ,θ) =∫
d 3kFa(k, v∥,µ,θ)e−i k·xe iρa k·a, Eq. (2.124) can be rewritten as

ε0∇·E =∑
a

qa

∫
d v∥dµd 3kdθ

B∗
∥

ma
Fa(k, v∥,µ,θ)e−i k·xe iρa k·a. (2.125)

To perform the k integration, we use the cylindrical coordinate system (k⊥,α,k∥), expressing

k = k⊥ cosθe1 +k∥b, such that k ·a = k⊥ cosθ. This coordinate system allows us to express

e iρa k·a in Eq. (2.125) in terms of Bessel functions using the Jacobi-Anger expansion (Andrews,

1992)

e i k⊥ρa cosθ = J0(k⊥ρa)+2
∞∑

l=1
Jl (k⊥ρa)i l cos(lθ) =

∞∑
l=−∞

i l Jl (k⊥ρa)e i lθ, (2.126)

where Jl (k⊥ρa) is the Bessel function of the first kind of order l . We can then write

ε0∇·E =∑
a

qa

∫
d v∥dµdθ

B∗
∥

ma

(
Γ0[Fa]+2

∞∑
l=1

i lΓl [Fa cos(lθ)]

)
. (2.127)

where the Fourier-Bessel operator Γl [ f ] is defined as

Γl [Fa(k, v∥,µ,θ)] ≡
∫

d 3kJl (k⊥ρa)Fa(k, v∥,µ,θ)e−i k·x. (2.128)

Introducing the Fourier decomposition of F̃a , Eq. (2.49), in Eq. (2.127), we obtain

ε0∇·E =∑
a

qa

∫
d v∥dµ

B∗
∥

m

(
Γ0[〈Fa〉R]+2π

∞∑
l=1

i l−1

lΩa
Γl [Cl a +C−l a]

)
, (2.129)

where the θ integration was performed by using the identity
∫ 2π

0 e iθ(l−m)dθ = 2πδ(l −m).

Notice that
∫ 2π

0 Γ0[Fa]dθ/2π= Γ0(〈Fa〉R), and corresponds to the J0(k⊥ρa) operator used in

most gyrofluid closures (Hammett et al., 1992; Dorland & Hammett, 1993; Snyder & Hammett,

2001; Madsen, 2013a), and in the gyrokinetic Poisson equation (Lee, 1983; Dubin et al., 1983).

We now order the terms appearing in Eq. (2.129). Using the Taylor series expansion of a
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Bessel function Jl (x) of order l (Abramowitz et al., 1965), we find

Γ0[〈Fa〉R] ∼
[

1− (k⊥ρa)2

4
+O(ε4)

]
〈Fa〉R , (2.130)

while using the orderings of νe and νi in Eqs. (2.3) and (2.38)

Γl [Cl a]

Ωa
< ενεl+1 〈Fa〉R . (2.131)

for l ≥ 1. Consistently with Section 2.3.3, we neglect the l ≥ 1 collisional terms, therefore

representing Poisson’s equation up to O(ενε). Such terms are included in the gyrokinetic

model in Chapter 3. Taylor expanding J0(x) ' 1−x2/4, Poisson’s equation reads

ε0∇·E =∑
a

qa

[
Na

(
1+ b ·∇×b

Ωa
u∥a +

b ·∇×vE

Ωa

)
+ 1

2ma
∇2
⊥

(
P⊥a

Ω2
a

)]
. (2.132)

2.6 Collisional Drift-Reduced Fluid Model

The infinite set of equations that describe the evolution of the moments of the distribution

function, Eq. (2.106), and Poisson’s equation, Eq. (2.132), constitute the drift-reduced model,

which is valid for distribution functions arbitrarily far from equilibrium. For practical pur-

poses, a closure scheme must be provided in order to reduce the model to a finite number

of equations. In this section, we derive a closure in the high collisionality regime. For this

purpose, we first state in Section 2.6.1 the evolution equations for the fluid moments (i.e.

na ,u∥a ,T∥a ,T⊥a ,Q∥a and Q⊥a), that correspond to the lowest-order indices of the moment-

hierarchy equation. Then, in Section 2.6.2, we apply a prescription for the higher-order parallel

and perpendicular moment equations that allows a collisional closure for Q∥a and Q⊥a in

terms of na ,u∥a ,T∥a and T⊥a . The nonlinear closure prescription used here, sometimes called

semi-collisional closure (Zocco & Schekochihin, 2011), can be employed at arbitrary collision-

alities by including a sufficiently high number of moments [indeed, it was used in Zocco et al.

(2015); Loureiro et al. (2016) to consider low collisionality regimes]. It also allows us to retain

the non-linear collision contributions inherent to a full-F description that may have the same

size as its linear contributions, as pointed out in Catto & Simakov (2004).

2.6.1 Fluid Equations

We first look at the (p, j ) = (0,0) case of Eq. (2.106). Noting that C 00
ab = 0, we obtain

∂N∗00
a

∂t
+∇· ∣∣∣∣Ṙ∣∣∣∣∗00

a +F 00
a = 0. (2.133)
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Evaluating
∣∣∣∣Ṙ∣∣∣∣∗p j

a in Eq. (2.108) and F
p j
a in Eq. (2.107), for (p, j ) = (0,0), Eq. (2.133) yields the

continuity equation

d 0
a Na

d t
+ d0a

d t

(
Na∇2

⊥φ
ΩaB

)
=−Na∇·u0a −

Na∇2
⊥φ

ΩaB
∇·U0a . (2.134)

The upper convective derivative d 0
a/d t , defined by

d 0
a

d t
= ∂

∂t
+u0a ·∇, (2.135)

is related to the guiding-center fluid velocity u0a

u0a = U0a +
T∥a +T⊥a

ma

b×∇B

ΩaB
+ b

Ωa
× d0aU0a

d t
, (2.136)

and it differs from the lower-convective derivative d0a/d t in Eq. (2.102) by the addition of the

last two terms in Eq. (2.136). The vorticity ∇2
⊥φ is related to the E×B drift by

b ·∇×vE

Ωa
= ∇2

⊥φ
BΩa

+O(ε3), (2.137)

and it appears in Eq. (2.134) due to the difference between N∗00
a and N 00

a [see Eq. (2.104)].

To derive Eq. (2.134), we use the low-β limit expression for b×k ' (b×∇B)/B and neglect

u∥ab ·∇×b/Ωa as

u∥ab ·∇×b

Ωa
∼ Te

Ti
β∼ ε3, (2.138)

therefore keeping up to O(ε2) terms [namely the ∇2
⊥φ term in Eq. (2.137)]. We note that,

although the particle Lagrangian is kept up to O(ε), the Euler-Lagrange equations set the

particle equations of motion and Botlzmann equation to be second order accurate in ε.

The parallel momentum equation is obtained by setting (p, j ) = (1,0) in Eq. (2.106), yielding

ma
d 0

au∥a

d t
= ma vth∥ap

2

∑
b

C 10
ab −

ma∇2
⊥φ

ΩaB

d0u∥a

d t
− map

2Na
∇· (u1

a Na vth∥a
)

+ma ||A ||∗00
a +

(
1+ ∇2

⊥φ
ΩaB

)(
qaE∥−T⊥a

∇∥B

B
+mavE · d0ab

d t

)
,

(2.139)

with

u1
a =

Uth
pap
2

+
p

2

ma

b×∇B

ΩaB

Q∥a +Q⊥a

Na vth∥a
+ vth∥a

b

2

(
1+ ∇2

⊥φ
ΩaB

)
. (2.140)

The expression for C 10
ab is given in Appendix B, as well as all the C p j

ab coefficients relevant for
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the present fluid model. The left-hand side of Eq. (2.139) describes the convection of u∥a ,

while the first term in the right-hand side is related to pressure and heat flux gradients, the

second term to resistivity (collisional effects), the third term consists of high-order terms

kept to ensure phase-space conservation properties, and the last term is the parallel fluid

acceleration, namely due to parallel electric fields, mirror force, and inertia.

The parallel and perpendicular temperature equations are obtained by setting (p, j ) = (2,0)

and (0,1) respectively in Eq. (2.106). This yields for the parallel temperature

Nap
2

d 0
aT∥a

d t
=p

2Q⊥a
∇∥B

B
− Na∇2

⊥φp
2ΩaB

d0aT∥a

d t
−2

NaT∥a

vth∥a
u1

a ·∇u∥a

−∇· (NaT∥au2∥
a )+NaT∥a

E

B
· b×∇B

B

(
1+ ∇2

⊥φ
ΩaB

)

+∑
b

C 20
ab N T∥a +

2NaT∥a

vth∥a
||A ||∗10

a ,

(2.141)

where

u2∥
a = Q∥a

2NaT∥a

Uth
pa

vth∥a
+
p

2T∥a

ma

b×∇B

ΩaB
+ b

2

Q∥a

NaT∥a

(
1+ ∇2

⊥φ
ΩaB

)
, (2.142)

and for the perpendicular temperature

Na
d 0

a

d t

(
T⊥a

B

)
+ Na∇2

⊥φ
ΩaB

d0a

d t

(
T⊥a

B

)
=∇·

(
NaT⊥a

B
u2⊥

a

)
− NaT⊥a

B

∑
b

C 01
ab , (2.143)

with

u2⊥
a =− Q⊥a

NaT⊥a

Uth
pa

vth∥a
− T⊥a

ma

b×∇B

ΩaB
. (2.144)

The equations for the evolution of the parallel Q∥a and perpendicular Q⊥a heat fluxes are

obtained by setting (p, j ) = (3,0) and (1,1) respectively in Eq. (2.106), yielding

d 0
aQ∥a

d t
=−d0a

d t

(
Q∥a

∇2
⊥φ
ΩaB

)
+NaT∥a

p
3vth∥a

∑
b

C 30
ab

−Q∥a∇·u0
a −

Q∥a∇2
⊥φ

ΩaB
∇·U0a −3∇· (ukaQ∥a)

− 3p
2

(
1+ ∇2

⊥φ
ΩaB

)
E ·b×∇B

B 2 Q∥a +3
p

2NaT∥a ||A ||∗20
a

−3
p

2NaT∥au2∥
a ·∇u∥a −3

p
2Na vth∥au1

a ·∇T∥a ,

(2.145)
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and

d 0
a

d t

(
Q⊥a

B

)
=−d0a

d t

(
Q⊥a

B

∇2
⊥φ
ΩaB

)
− Na vth∥ap

2
(u1

a ·∇)
T⊥a

B

+ NaT⊥a

B
(u2⊥

a ·∇)u∥a −
(

Q⊥a

B

)(
∇·u0

a +
∇2
⊥φ
ΩB

∇·U0a

)

− (Uka +2U∇B ) ·∇
(

Q⊥a

B

)
−

∑
b C 11

abp
2

vth∥a NaT⊥a

B

+
(

NaT 2
⊥a

ma

∇∥B

B 2 + Q⊥a

B
E · b×∇B

B 2

)(
1+ ∇2

⊥φ
ΩaB

)
.

(2.146)

In Eqs. (2.145) and (2.146) we neglected the higher-order moments with respect to N 30 and

N 11, an approximation that we will scrutinize in the next section. Equations (2.134)-(2.146)

constitute a closed set of six coupled non-linear partial differential equations for both the fluid

variables na ,u∥a ,T∥a ,T⊥a , and the kinetic variables Q∥a and Q⊥a .

With respect to previous δF (Dorland & Hammett, 1993; Brizard, 1992) and full-F gyrofluid

models (Madsen, 2013a), our fluid model, Eqs. (2.134-2.146), while neglecting k⊥ρi ∼ 1 effects,

includes the velocity contributions from the B∗
∥ denominator in the equations of motion,

Eqs. (2.24) and (2.25), and includes the effects of full Coulomb collisions up to order ενε.

Also, due to the choice of basis functions with shifted velocity arguments Hp (s∥a) instead

of Hp (v∥/vtha), we obtain a set of equations that can efficiently describe both weak flow

(u∥a ¿ vtha) and strong flow (u∥a ∼ vtha) regimes.

2.6.2 High Collisionality Regime

We now consider the high collisionality regime, where the characteristic fluctuation frequency,

ω, of the fluid variables, satisfies

ω∼ vtha |∇∥ ln Na | ∼ vtha |∇∥ lnT∥a | ∼ vtha |∇∥ lnT⊥a | ∼ |∇∥ u∥a | ∼ vtha/L∥a , (2.147)

is much smaller than the collision frequency νa ' νaa , that is

δa ∼ ω

νa
∼ λm f pa

L∥a
¿ 1, (2.148)

where the mean free path λm f pa in Eq. (2.148) is defined as

λm f pa = vtha/νaa . (2.149)

Equation (2.148) describes the so-called linear transport regime (Balescu, 1988). In this

case, the distribution function can be expanded around a Maxwell-Boltzmann equilibrium,

according to the Chapman-Enskog asymptotic closure scheme (Chapman, 1962) and, to first
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order in δa , we have

〈Fa〉R ' FM a
[
1+δa f1a(R, v∥,µ, t )

]
. (2.150)

According to Eq. (2.150), all moments N p j
a in the Hermite-Laguerre expansion Eq. (2.50)

with (p, j ) 6= (0,0) are order δa . Since Q∥a and Q⊥a are determined at first order in δa

only by the moments (p, j ) = (0,0), (3,0), (1,1), the truncation of Sec. (2.6.1), i.e., neglecting

(p, j ) 6= (0,0), (3,0), (1,1) is justified. For a more detailed discussion on this topic see Balescu

(1988). Moreover, in the linear regime, a relationship between the hydrodynamical and kinetic

variables can be obtained along the lines of the semi-collisional closure. This allows us to

express Q∥a and Q⊥a as a function of Na ,u∥a ,T∥a and T⊥a , therefore reducing the number of

equations. We now derive this functional relationship.

We consider Eqs. (2.145)-(2.146) in the linear regime, and neglect the polarization terms

that are proportional to∇2
⊥φ/(ΩaB). This yields

p
3/2

∑
b C 30

ab/vth∥a ' R∥a and
∑

b C 11
ab/(

p
2vth∥a) '

R⊥a , with R∥a and R⊥a given by

R∥a = ∇∥T∥a

T∥a
+u∥a

b×∇B

ΩaB
·
(∇u∥a

u∥a
+ ∇T∥a

T∥a

)
, (2.151)

R⊥a = T⊥a

T∥a

∇∥B

B
− 1

2
p

2
∇∥ ln

T⊥a

B
−u∥a

b×∇B

ΩaB
·
(

T⊥a

T∥a

∇u∥a

u∥a
+∇ ln

T⊥a

B

)
, (2.152)

since d 0
a/d t ∼ d0a/d t ∼ ω and (d 0Q∥,⊥/d t)/Q∥,⊥a ∼ δ2

aνa . We compute the guiding-center

moments of the collision operator C 30
ab and C 11

ab by truncating the series for the like-species

collision operator in Eq. (2.91) at (l ,k,n, q) = (2,1,2,1). The resulting C p j
ab coefficients are

presented in Appendix B.

With the expression of C 30
ab and C 11

ab , we can solve for Q∥a and Q⊥a . In the regime (T∥a −
T⊥a)/Ta ∼ δ, at lowest order, we obtain for the electron species

Q∥e

Ne Te vthe
=−0.362

u∥e −u∥i

vthe
−10.6λm f pe

∇∥Te

Te
, (2.153)

and

Q⊥e

Ne Te vthe
=−0.119

u∥e −u∥i

vthe
−3.02λm f pe

∇∥Te

Te
. (2.154)

Analogous expressions are obtained for the ion species.

Equations (2.134), (2.139), (2.141), and (2.143), with Q∥a and Q⊥a given by Eqs. (2.153)

and (2.154) are valid in the high collisionality regime, and can be compared with the drift-

reduced Braginskii equations in Zeiler et al. (1997). We first rewrite the continuity equation,
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Eq. (2.134), in the form

∂Ne

∂t
+∇·

[
Ne

(
vE +u∥e b+ T∥e +T⊥e

me

b×∇B

Ωe B

)]
= 0, (2.155)

where we expand the convective derivative d 0a/d t using Eq. (2.135) and Eq. (2.136), and ne-

glect polarization terms proportional to the electron mass me . By noting that the diamagnetic

drift vde can be written as

vde =
1

eNe
∇× pe b

B
−2

Te

me

b×∇B

Ωe B
, (2.156)

and by considering the isotropic regime T∥e ∼ T⊥e ∼ Te , we obtain

∂Ne

∂t
+∇· [Ne

(
vE +u∥e b+vde

)]= 0, (2.157)

which corresponds to the continuity equation in the drift-reduced Braginskii model in Zeiler

et al. (1997). In that model, the polarization equation is obtained by subtracting both electron

and ion continuity equations, using Poisson’s equation ne ' ni with ne and ni the electron

and ion particle densities respectively, and neglecting terms proportional to the electron to

ion mass ratio. Applying the same procedure to the present fluid model, we obtain

0 =∇·
(∇2

⊥φNi u∥i b

Ωi B

)
−∇·

[
vE

2mi
∇2
⊥

(
Ni T⊥i

Ω2
i

)]
− 1

2mi

∂

∂t
∇2
⊥

(
Ni T⊥i

Ω2
i

)

+∇·
(

Ni

Ωi
b× d0i U0i

d t

)
+∇· [b

(
Ni u∥i −Ne u∥e

)]
+∇·

[(
Ni T∥i +Ne T∥e +Ni T⊥i +Ne T⊥e

) b×∇B

eB 2

]
.

(2.158)

In Eq. (2.158), the first three terms, which are not present in the drift-reduced Bragin-

skii model, correspond to the difference between ion guiding-center density Ni and particle

density ni , proportional to both ∇2
⊥φ and ∇2

⊥Pi . The parallel momentum and temperature

equations, Eq. (2.139) and Eq. (2.141), with respect to (Zeiler et al., 1997), contain the higher-

order term A∼O(ε2) that ensures phase-space conservation, mirror force terms proportional

to (∇∥B)/B , and polarization terms proportional to ∇2
⊥φ/(ΩaB) due to the difference between

guiding-center and particle fluid quantities. This set of fluid equations constitute an improve-

ment over the drift-reduced Braginskii model. With respect to the original Braginskii equations

(Braginskii, 1965), they include the non-linear terms that arise when retaining full Coulomb

collisions, and the effect of ion-electron collisions.

2.7 Conclusion

In this chapter, a drift-kinetic model is developed, suitable to describe the plasma dynamics

in the SOL region of tokamak devices at arbitrary collisionality. Taking advantage of the
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separation between the turbulent and gyromotion scales, a gyroaveraged Lagrangian and its

corresponding equations of motion are obtained. This is the starting point to deduce a drift-

kinetic Boltzmann equation with full Coulomb collisions for the gyroaveraged distribution

function.

The gyroaveraged distribution function is then expanded into an Hermite-Laguerre basis,

and the coefficients of the expansion are related to the lowest-order gyrofluid moments. The

fluid moment expansion of the Coulomb operator described in Ji & Held (2009) is reviewed,

and its respective particle moments are written in terms of coefficients of the Hermite-Laguerre

expansion, relating both expansions. This allows us to express analytically the moments of the

collision operator in terms of guiding-center moments. A moment-hierarchy that describes

the evolution of the guiding-center moments is derived, together with a Poisson’s equation

accurate up to ε2. These are then used to derive a fluid model in the high collisionality limit.

The drift-kinetic model derived herein will be considered in Chapter 3 as a starting point

for the development of a gyrokinetic Boltzmann equation suitable for the SOL region (e.g. Qin

et al. (2007); Hahm et al. (2009)). Indeed, using a similar approach, a gyrokinetic moment-

hierarchy may be derived, allowing for the use of perpendicular wave numbers satisfying

k⊥ρs ∼ 1.
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3 A full-F Gyrokinetic Model for the
Tokamak Periphery

As described in Chapter 2, the plasma dynamics in the scrape-off layer region of fusion de-

vices is, in general, characterized by turbulent structures with length scales larger than the

ion Larmor radius. However, inside the separatrix, in the edge region, the plasma is hotter

and less collisional than in the scrape-off layer. Moreover, in the edge region, small-scale

k⊥ρs ∼ 1 fluctuations become important (Hahm et al., 2009). This is especially relevant in

the high-temperature tokamak H-mode regime (Zweben et al., 2007), the regime of opera-

tion relevant for ITER and future devices. Despite recent progress (Chang et al., 2017; Shi

et al., 2017), overcoming the limitation of the drift-reduced fluid models in modelling of the

tokamak periphery region by using a gyrokinetic model valid at k⊥ρi ∼ 1 has proven to be

exceptionally demanding, mainly because plasma quantities such as density and temperature,

and associated plasma collisionality, can span a wide range of values and the relative level

of fluctuations in this region can be of order unity (Scott, 2002). In order to overcome the

numerical complexity associated with the modelling of small-scale fluctuations at the tokamak

periphery, in this chapter, we extend the drift-kinetic moment-hierarchy derived in Chapter 2

to the gyrokinetic regime.

By taking advantage of the low-frequency character of plasma turbulence in magnetized

plasma systems, gyrokinetic theory effectively removes the fast time scale associated with the

cyclotron motion and reduces the dimensionality of the kinetic equation from six phase-space

variables, (x,v), to five. While linear and nonlinear gyrokinetic equations of motion were

originally derived using asymptotic techniques (Taylor & Hastie, 1968; Rutherford & Frieman,

1968; Catto, 1978), more recent derivations of the gyrokinetic equation based on Hamiltonian

Lie perturbation theory (Cary, 1981) ensure the existence of phase-space volume and magnetic

moment conservation laws (Hahm, 1988; Brizard & Hahm, 2007; Hahm et al., 2009; Frei et al.,

2019), and are the ones followed in this chapter for the derivation of the gyrokinetic model.

As both large scale and amplitude fluctuations (particularly in the H-mode pedestal), and

small scale and amplitude fluctuations k⊥ρs ∼ 1 are at play in the tokamak periphery, we split
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the electrostatic potential φ=φ0 +φ1 into its large-scale component φ0 satisfying

eφ0

Te
∼ 1, (3.1)

and its small-scale φ1 component

φ1

φ0
∼ εδ¿ 1. (3.2)

Both φ0 and φ1 are set to yield a similar contribution to the total electric field

E ∼∇⊥φ0 ∼∇⊥φ1. (3.3)

We order typical gradient lengths of φ1 to be comparable to ρs , that is

ρs

∣∣∣∣∇⊥φ1

φ1

∣∣∣∣∼ 1, (3.4)

which, using Eqs. (3.2) and (3.3), constraints typical gradient lengths of φ0 to be much larger

than ρs , as

ρs

∣∣∣∣∇⊥φ0

φ0

∣∣∣∣∼ εδ. (3.5)

In the following, we set εδ ∼ ε. We note that the use of the sound Larmor radius ρs instead of

the ion Larmor radius ρi in Eqs. (3.4) and (3.5) allows us to describe the dynamics of both cold

ion and hot ion plasmas. Finally, similarly to Eq. (2.3), the collision frequency is ordered as

νe

Ωi
∼ εν < ε, (3.6)

with νe = νei the electron-ion collision frequency.

The Hamiltonian approach we use to derive the gyrokinetic equation is usually carried out

in two steps. In the first step, small-scale electrostatic fluctuations with perpendicular wave-

lengths comparable to the particle Larmor radius are neglected (Cary & Brizard, 2009). Within

this approximation, the coordinate transformation from particle phase-space coordinates

(x,v) to guiding-center coordinates Z = (R, v∥,µ,θ) is derived, where R is the guiding-center,

v∥ the parallel velocity, µ the adiabatic invariant, and θ the gyroangle. To first order, and in

the electrostatic limit, this procedure yields the Lagrangian derived in Chapter 2, Eq. (2.19).

The second step introduces small-scale and small-amplitude electrostatic fluctuations φ1.

A gyrocenter coordinate system Z = (R, v∥,µ,θ) is then constructed perturbatively from the

guiding-center coordinates Z via a transformation T of the form

Z = T Z = Z+εδZ1 + ..., (3.7)

such that µ= Tµ=µ+εδµ1 + ... remains an adiabatic invariant. This allows us to reduce the
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3.1. Derivation of the Gyrokinetic Equation

number of phase-space variables in the kinetic Boltzmann equation describing the evolution

of the particle distribution function from six to five, simplifying the analytical and numerical

treatment of magnetized plasma systems.

Similarly to Chapter 2, we consider a plasma composed of both electrons and ions, with

distribution functions arbitrarily far from thermal equilibrium with electrostatic fluctuations

only, i.e., ∂t A = 0. In order to allow both eφ/Te ∼ 1 fluctuations with k⊥ρs ¿ 1 and eφ/Te ¿ 1

fluctuations with k⊥ρs ∼ 1, we order

ε∼ vE×B

cs
∼ k⊥ρs

eφ

Te
∼ k∥

k⊥
¿ 1. (3.8)

We focus on the collisionless part of the plasma dynamics, while the development of a gyroki-

netic collision operator is performed in Chapter 4. The derivation of the gyrokinetic model is

presented in Section 3.1. In Section 3.2, a moment-hierarchy formulation of the gyrokinetic

equation is derived, by expanding the distribution function in Hermite-Laguerre polynomials.

In Section 3.3, the system of equations is closed by deriving the gyrokinetic Maxwell’s equa-

tions in terms of coefficients of the Hermite-Laguerre expansion of the distribution function.

The conclusions follow.

3.1 Derivation of the Gyrokinetic Equation

We start from the guiding-center Lagrangian L0a of a charged particle moving under the effect

of an electromagnetic field derived in Chapter 2, Eq. (2.19), and write the guiding-center

Lagrangian one-form γ0a = L0ad t as

γ0a = qaA∗ ·dR+µma

qa
dθ−

(
qaφ

∗
0 +

ma v2
∥

2

)
d t =Λ0a ·dZ−H0ad t , (3.9)

where we defined the vectorΛ0a asΛ0a =
(
qaA∗

0 ,0,0,µma
qa

)
and the Hamiltonian H0a = qaφ

∗
0 +

ma v2
∥/2, with φ∗

0 and A∗
0 the quantities defined in Eqs. (2.20) and (2.21), respectively. The

drift-kinetic equation of motion derived using the Euler-Lagrange equations in Chapter 2, can

also be derived by setting to zero the variation of the action A0a = ∫
γ0a .

In order to include perturbations at the Larmor radius scale, the electrostatic field φ1(x),

neglected in the derivation of Eq. (2.19), is now added to Eq. (3.9), i.e., we add the term −qφ1

present in the particle Lagrangian in Eq. (2.7). Therefore, the resulting Lagrangian one-form

including guiding-center dynamics and gyrokinetic perturbations is given by

γa =Λ0a ·Z−H0ad t −qφ1d t =Λa ·dZ−Had t . (3.10)

We note that due to the presence of φ1(x) =φ1(R+ρ) in the Hamiltonian Ha , the Lagrangian

in Eq. (3.10) is no longer gyroangle independent. In order to reduce the Lagrangian γa from a

six dimensional phase-space dependence Z to a five dimensional dependence, we perform a
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coordinate transformation to a new coordinate system Z = (R ,µ, v∥,θ) in such a way that the

gyrophase dependence of γa in θ is removed. Under a change of coordinates Z = T Z, given

perturbatively by Eq. (3.7), the Lagrangian γa is given by

γa =∑
i
Λa · ∂Z

∂Z i
d Z i −Had t . (3.11)

Therefore, by defining the vector

Λi =Λ · ∂Z

∂Z i
, (3.12)

the Lagrangian γa in the new coordinate system can be written as

γa =Λa ·dZ−Had t . (3.13)

Equation (3.12) shows that the vectorΛa and, in general, the Lagrangian one-form γa , trans-

form as covariant vectors under a change of coordinates. As the coordinate transformation T

is dependent on the phase-space coordinates Z, the change of basis in Eq. (3.12) is, in general,

difficult to evaluate for an arbitrary coordinate transformation. However, as noted by Deprit

(1969), leveraging the fact that T is a near-identity transformation [see Eq. (3.7)], theΛa vector

can be expanded as Λa = ∑
n ε

nΛan , and a recursion relation for the Λan components can

be found. This near-identity transformations, in the context of perturbation theory, were

formulated as Lie transforms by Deprit and are introduced in the next section.

3.1.1 Lie Transform Perturbation Theory

We present the formalism we use to perform the coordinate transformation from Z to Z, i.e. a

perturbation approach known as Lie transform perturbation theory (Deprit, 1969; Cary, 1981;

Littlejohn, 1981; Brizard & Mishchenko, 2009). This formalism allows us to convert a one

form γ= γνd zν with a symplectic partΛ and Hamiltonian part H such that γν = (Λ,−H) and

zν = (zi , t), to a new one-form Γ= Γνd Z ν with new set of coordinates Z ν. We remark that γ

and Γ are two arbitrary one-forms that are linked by a coordinate transformation, and that ν

runs from 1 to 6+1, since it includes the time component t of the transformation, whereas the

index i runs from 1 to 6. We look for a near-identical coordinate transformation around the

small parameter εδ ∼ ε¿ 1, namely

Z ν =φν+
(
zν,ε

)= ∞∑
n=0

εn

n!

∂nφν+ (zν,0)

∂εn , (3.14)

where φν+ = (zν,ε) is the mapping function that specifies the coordinate transformation, such

that φν+(zµ,0) = zν. In Eq. (3.14), for a given ε, the function φν+ transforms the coordinates

zν to the new coordinates Z ν. Indeed, the coordinates Z ν are the values of the function φν+
evaluated at (zν,ε). Symmetrically, we can define the inverse transformation of Eq. (3.14) by
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introducing the mapping function φν−(Z ν,ε) as

zν =φν−(Z ν,ε) =φν−
(
φν+

(
zν,ε

)
,ε

)
. (3.15)

The Lie transform is a special case of Eq. (3.14), where the function φν+ is specified by introduc-

ing a generating function, gν, such that φν+ is solution of

∂φν+
∂ε

(zν,ε) = gν
(
φν+(zν,ε)

)
. (3.16)

We remark that Eq. (3.16) is a functional relation since both sides are evaluated at (zν,ε) and,

therefore, the arguments are dummy variables. An equation for φν− can be obtained by taking

the derivative with respect to ε on both sides of Eq. (3.15) and using Eq. (3.16), yielding

∂φν−
∂ε

= dφν−
dε

− ∂φ
µ
+

∂ε

∂φν−
∂φ

µ
+
=−gλ

∂φν−
∂Z λ

, (3.17)

where we used the fact that d zν/dε= 0.

We now deduce the transformation rule of scalar functions induced by a Lie transform

specified by Eq. (3.16). Let f be a scalar function of the coordinates zν and F a scalar function

of the new coordinates Z ν which satisfy f (zν) = F (Z ν) with Z ν =φν+ (zν,ε), e.g., the guiding-

center distribution function in Eq. (2.39). Since the coordinate transformation in Eq. (3.14)

depends explicitly on ε, the function F will also have an explicit ε-dependence. Thus, we write

F (Z ν,ε) = f (zν). (3.18)

Taking the derivative with respect to ε of Eq. (3.18), while noticing that d f /dε= 0, and using

Eq. (3.16), we obtain

∂F

∂ε
=−gν∂νF ≡−Lg F. (3.19)

In Eq. (3.19), we defined the Lie derivative Lg of a scalar function as

Lg ≡ gν∂ν. (3.20)

The differential operator ∂ν acting on F is defined by

∂νF =


∂F (Z ν)

∂Z ν
,

∂F (zν)

∂zν
.

(3.21)

Expanding F (Z ν,ε) around ε, using Eq. (3.19) to compute the ε derivatives of F , and the fact

that F
(
φν+ (zν,0) ,0

)= F (zν,0) = f (zν), the functional relation between F and f can be found,
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yielding

F = e−εLg f , (3.22)

From Eq. (3.22), the functions F and f coincide at ε= 0. The inverse relation follows directly

from Eq. (3.17) by

f = eεLg F. (3.23)

We emphasize that Eqs. (3.22) and (3.23) are relations between functions, in the sense that

their arguments are dummy variables and, therefore, can be evaluated at both zν and Z ν [in

the sense of Eq. (3.21)]. We refer to Eq. (3.22) as push-forward transformation, and to Eq. (3.23)

as pull-back transformation (Brizard & Mishchenko, 2009).

Equations (3.22) and (3.23) allow us to derive the functional form of the coordinate trans-

formation in Eq. (3.14) as specified by Eq. (3.16). With the particular choice of scalar functions

F = φν− and f = Iν [Iν is the coordinate function, such that Iν(zν) = zν = φν−(Z ν,ε))], and

evaluating the push-forward transformation in Eq. (3.22) at Z ν, yields

zν = e−εLg Z ν. (3.24)

The inverse coordinate transformation of Eq. (3.24) follows directly from the pull-back trans-

formation in Eq. (3.23) with, in particular, f =φν+ and F = Iν evaluated at zν, that is

Z ν = eεLg zν. (3.25)

We now derive the transformation rule of a one-form [e.g., γ in Eq. (3.10)] under the

transformation in Eq. (3.14). From the invariance Γνd Z ν = γνd zν, the components of Γ

transform as components of a covariant vector,

Γν(Z ν,ε) = ∂φλ−
∂Z ν

(Z ν,ε)γλ
(
φν−(Z ν,ε)

)
, (3.26)

with Z ν = φν+(zν,ε). Evaluating the derivative with respect to ε on both sides of Eq. (3.26),

using Eq. (3.17), and finally expanding Γν(Z ν,ε) around ε, we find the following functional

relation

Γν = e−εLgγν+∂νS, (3.27)

with S a gauge function and Lg the Lie-derivative acting on a one-form Γ. The ν component

of the Lie-derivative acting on a one-form is given by

(Lgγ)ν = gλ
(
∂λγν−∂νγλ

)
. (3.28)

The gauge function S reflects the invariance of the action A = ∫
Γ under the addition of a total
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derivative. We remark that the Lie derivative in Eq. (3.28) does not correspond to the one in

Eq. (3.20), as they act on different mathematical objects. Equations (3.22) and (3.27) define the

transformations of scalar functions and one-forms induced by the Lie transform associated

with the generating function gν.

In a perturbative approach, a change of coordinates is performed at a particular order in

ε, with the goal of averaging out the high-frequency components in the particle dynamics at

each nth-order in the expansion. Therefore, we define Ln ≡Lgn as a shorthand notation to

the Lie-derivative associated with the generating function gνn , and introduce the successive

change of coordinates,

Zν ≡ Tεzν =
∞∏

n=1
eε

nLn zν. (3.29)

Thus, we obtain the second-order accurate coordinate transformation evaluated at zν by

expanding Tε = eεL1+ε2L2+... in ε and, using Eq. (3.20), yielding

Z ν = zν+εgν1 (zν)+ε2
[

1

2
gλ1 (zν)∂λgν1 (zν)+ gν2 (zν)

]
+O(ε3). (3.30)

Applying the same procedure for the one-form Γ = ∑
n Γn , the recursion relations for the

component Γn , obtained from the one-form γ=∑
n γn , are given by

Γ0 = γ0 +dS0, (3.31a)

Γ1 = γ1 −L1γ0 +dS1, (3.31b)

Γ2 = γ2 −L1γ1 +
(

1

2
L 2

1 −L2

)
γ0 +dS2, (3.31c)

Γ3 = γ3 −L1γ2 −L3γ0 −L2Γ1 + 1

3
L 2

1

(
γ1 + 1

2
Γ1

)
+dS3, (3.31d)

...

In Eq. (3.31), the Lie-derivatives act on one-forms and are, therefore, defined by the relation in

Eq. (3.28).

In the following, we use Lie transform perturbation theory and solve the hierarchy in

Eq. (3.31) to obtain the gyrocenter one-form Γ(R , v∥,µ) from the guiding-center one-form

γ in Eq. (3.10) up to second order in ε. We note that the inherent degrees of freedom in

choosing the generating functions gνn allow for different expressions of Γ found in the literature,

depending on the imposed constraints on the one-form and on the lowest order guiding-center

Lagrangian (see, e.g., Brizard & Hahm, 2007; Hahm et al., 2009; Dimits, 2012; Tronko et al.,

2016).
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3.1.2 Gyrocenter Transformation

We now construct the gyrocenter coordinates Z = (R , v∥,µ,θ) in order to obtain a gyrophase

independent Lagrangian one-form Γ= Γi d Z
i −Hd t and, as a consequence, retain the dynami-

cal conservation ofµ. While the use of Lie-transforms to derive a gyrocenter coordinate system

from a drift-kinetic Lagrangian is standard in gyrokinetic literature, here, for the first time, we

apply Lie-transforms to the Lagrangian derived in Chapter 2. The gyrocenter one-form Γ is

derived by using Lie transform perturbation theory up to second-order in the small parameter

ε. However, we show that only a O(ε) coordinate transformation in Eq. (3.30) is sufficient

to obtain a second order accurate equation for the evolution of the gyrocenter distribution

function. The kinetic equation we obtain allows us to describe the plasma dynamics in the

tokamak periphery in the presence of electrostatic fluctuations at the particle Larmor radius

scale, and retain k⊥ρs effects at arbitrary order.

Following Eq. (3.10), we write the perturbed guiding-center one-form γ as γ= γ0 +εγ1 in

the guiding-center coordinate system Z, with

γ0 =Λ0a ·dZ−H0ad t , (3.32)

and

γ1 =−qφ1d t . (3.33)

We take advantage of the degrees of freedom in the choice of the gyrocenter generating

functions, denoted by gν1 and gν2 , to impose that only H gets modified in the coordinate

transformation, while the symplectic partΛ retains its form. The resulting Lagrangian is then

evaluated at Z. This is usually referred to as the Hamiltonian formulation of gyrokinetics

since it includes gyrokinetic fluctuations in the Hamiltonian component of the one-form only

(Brizard & Hahm, 2007; Miyato & Scott, 2011). Therefore, we impose that forΛ=∑
n ε

nΛn , the

componentsΛn vanish for n ≥ 1. Additionally, by requiring that Γ is gyrophase independent,

we impose ∂θH = 0. These two rules are referred to as gyrocenter transformation rules. The

Hamiltonian formulation is advantageous since the guiding-center Jacobian, B∗
∥ /m, is not

perturbed by the small-scale fluctuations, such that it preserves its functional form, i.e.

B∗
∥ (R)

ma
dRd v∥dµdθ =

B∗
∥ (R)

ma
dRd v∥dµdθ. (3.34)

We solve now the hierarchy in Eq. (3.31) up to second-order in εδ. From the zeroth-

order transformation, Eq. (3.31a), we find Γ0 = γ0 with S0 = 0 and retrieve the guiding-center

dynamics at lowest-order in ε. The first order gyrocenter correction Γ1, given by Eq. (3.31b), is
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obtained by computing the Lie-derivative of γ0 according to Eq. (3.28). This yields

Γ1 =
(
qa g R

1 ×B∗−ma g ∥
1b +∇S1

)
·dR +

(
ma g R

1 ·b + ∂S1

∂v∥

)
d v∥

+
(
∂S1

∂θ
− ma

qa
gµ1

)
dθ+

(
ma

qa
g θ1 + ∂S1

∂µ

)
dµ

+
[

B gµ1 +ma v∥g ∥
1 +g R

1 ·
(

qa∇φ0 +µ∇B + ma

2
∇v2

E + ∂A∗

∂t

)
−qaφ1 + ∂S1

∂t

]
d t .

(3.35)

The high-frequency components in the fluctuations can be isolated by using the gyroaverage

operator in Eq. (2.15), such that

φ1 = 〈φ1〉R + φ̃1. (3.36)

Imposing the gyrocenter transformation rules to Eq. (3.35) yields

S1 = q

Ω

∫ θ

0
dθ′φ̃1. (3.37)

The first order gyrocenter generating functions are given by

g R
1 =− 1

qaB∗
∥

b ×∇S1,

g ∥
1 = B∗ ·∇S1

maB∗
∥

,

gµ1 = qa

ma

∂S1

∂θ
,

g θ1 =− qa

ma

∂S1

∂µ
.

(3.38)

The first order gyrocenter correction Γ1 in Eq. (3.35) can then be written as

Γ1 =−q 〈φ1〉d t =−H 1d t . (3.39)

We remark that the first order gyrocenter correction Γ1 in Eq. (3.39) corresponds to the one

found in Brizard & Hahm (2007); Hahm et al. (2009). Using Eq. (3.30) and Eq. (3.38), the

gyrocenter coordinates Z =
(
R , v∥,µ,θ

)
accurate up to O(ε) are given by

R = R +g R
1 ,

v∥ = v∥+ g ∥
1 ,

µ=µ+ gµ1 ,

θ = θ+ g θ1 .

(3.40)

In a similar manner, the system of equations in Eq. (3.31) can be used to derive a second order

Lagrangian Γ2 that obeys the gyrocenter transformation rules. The resulting second order

51



Chapter 3. A full-F Gyrokinetic Model for the Tokamak Periphery

gauge function S2 is given by

S2 =
q2

a

2BΩa

∫ θ

dθ′
[
∂φ̃1

2

∂µ
+ b

qaΩa
·
[
∇

(∫ θ′

dθ′′φ̃1

)
×∇φ̃1

]]
, (3.41)

which allows us to derive the corresponding second-order gyrocenter generating functions gν2

g R
2 =− 1

qa

b

B∗
∥
×∇S2, (3.42)

g ∥
2 = B∗ ·∇S2

maB∗
∥

, (3.43)

gµ2 = qa

ma

∂S2

∂θ
, (3.44)

g θ2 =− qa

ma

∂S2

∂µ
, (3.45)

and the second order perturbed Lagrangian

Γ2 =
q3

a

2maΩa

[
∂〈φ̃1

2〉
∂µ

+ b

qaΩa
· 〈∇

(∫ θ

dθ′φ̃1

)
×∇φ̃1〉

]
d t =−H 2d t . (3.46)

Therefore, the gyrocenter one-form Γ, accurate up to O(ε2), is given by

Γ
(
R , v∥,µ

)
= qaA∗ ·dR + µB

Ωa
dθ−Hd t , (3.47)

with the gyrokinetic Hamiltonian H = H 0 +H 1 +H 2. Here, the overline notations H 0 and A∗

indicate that the guiding-center quantities are now evaluated at
(
R , v∥,µ

)
, i.e. H 0 = H0(R , v∥,µ)

in Eq. (3.9) and A∗ = A∗(R , v∥,µ). The gyrokinetic potential φ1(x) in H1 and H2 must be

evaluated at the particle position x expressed in the gyrocenter phase-space. Using Eqs. (2.12)

and (3.40), the particle position x can be written as

x = R +ρ+O(ε2), (3.48)

with ρ(Z) = ρ(Z)−g R
1 (Z). As shown in Brizard (1989); Sugama (2000), the generator g R

1 present

in the ρ term in Eq. (3.48) induces third order contributions to the one-form γa . Therefore,

when evaluating the potential φ1(x), only its lowest order contribution φ1(x) 'φ1[R +ρ(Z)] is

considered.

The gyrokinetic Hamiltonian H1 and H2 represent the effects on the particle dynamics of

small-scale fluctuations of the electric field. In particular, we identify the O(ε) term as the first

order gyrokinetic potential φ1. The O(ε2) modification, however, is a nonlinear contribution

that represents nonlinear ponderomotive effects driven by φ1. In fact, in the long wavelength
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limit, with φ' (1+ρ ·∇+ρρ : ∇∇)〈φ〉, we find that

H2 '−1

2
mav2

E . (3.49)

For a more detailed discussion on the physics of the Hamiltonian present in Eq. (3.49) see

Krommes (2013).

By applying the Euler-Lagrange equations to the Lagrangian in Eq. (3.47) or, equivalently,

by varying the action A = ∫
Γ, second-order nonlinear gyrokinetic equations of motion are

obtained

qaB∗× Ṙ +mab v̇∥ =−∇
[

qa(φ0 +〈φ1〉R )+H2 + ma

2
v2
∥+

ma

2
v2

E +µB
]
−qa

∂A∗

∂t
, (3.50)

with v∥ = b · Ṙ , and µ̇= 0. In Eq. (3.50), we have defined the gyroaveraging operator 〈χ〉R as

〈χ〉R = 1

2π

∫ 2π

0
χ(θ)dθ, (3.51)

which is performed at fixed position R . The Ṙ and v̇∥ equations of motion can be obtained by

taking the vector and scalar product of Eq. (3.50) with b and B∗, respectively. This yields

Ṙ =U + B

B∗
∥Ωa

b ×
(

dU

d t
+ µ

ma
∇B

)
+ b

B∗
∥
×∇

(
〈φ1〉R + H2

qa

)
, (3.52)

ma v̇∥ = qaE∥−µ∇∥B +mavE · db

d t
−maA −qa

B∗

B∗
∥
·∇

(
〈φ1〉R + H2

qa

)
, (3.53)

θ̇ =Ωa +
q2

a

ma

∂

∂µ

(
〈φ1〉R + H2

qa

)
, (3.54)

where the convective derivative d/d t is defined as d/d t = ∂t +U · ∇ with the lowest order

particle velocity U = vE + v∥b. Similarly to the drift-kinetic case, Equation (3.52) describes

the motion of a single gyrocenter in the tokamak periphery. Besides U, the particle velocity

includes the polarization drift of the background electric field, i.e. 1/Ωab ×dtU , the magnetic

gradient drifts, such as, e.g., µ/Ωab ×∇B , and the gyrokinetic E×B drift, .i.e., b ×∇(H1 +
H2)/(qaB) due to small-scale fluctuations. Equation (3.53) is the parallel momentum equation

that, besides the drift-kinetic contributions similar to Eq. (2.25), includes an additional parallel

force due to the parallel gradients of the gyrokinetic Hamiltonian H1 +H2. Finally, Eq. (3.54)

represents the evolution in time of the gyrocenter gyrophase θ of the particle, which is different

from the physical gyroangle θ due to small-scale perturbations in the particle gyromotion.

With respect to Chapter 2, the equations of motion in Eqs. (3.52) and (3.53) take into

account second order accurate gyrokinetic fluctuations that can be used to describe the

evolution of the plasma distribution function due to both large-scale φ0 and small-scale φ1

time dependent fluctuations. We remark that second order gyrokinetic effects are needed
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in order to obtain an energy conservation law when applying Noether’s theorem (Brizard &

Hahm, 2007). While in the present thesis, an electrostatic model first order accurate in the

guiding-center dynamics and second order for the gyrokinetic fluctuations is considered, in

Frei et al. (2019), we improve Eqs. (3.52) and (3.53) by using a Lie-transform perturbation

methods to describe both guiding-center and gyrocenter dynamics up to second order in ε

and to include electromagnetic fluctuations, which constitute an important improvement

over previous gyrokinetic models for the edge region (Hahm et al., 2009; Dimits, 2012; Madsen,

2013a).

3.1.3 The Gyrokinetic Equation

The gyrokinetic equation dictates the evolution of the gyrocenter distribution function F ,

which is related to the guiding-center distribution function F and to the particle distribution

function f (x,v) via

F (Z) = F (Z) = f (x,v). (3.55)

Similarly to Eq. (2.40) we use the chain rule to rewrite the Boltzmann equation, Eq. (2.31), in

gyrocenter coordinates Z, yielding

∂Fa

∂t
+ Ṙ ·∇Fa + v̇∥

∂Fa

∂v∥
+ θ̇ ∂Fa

∂θ
=C (Fa), (3.56)

where we used the fact that µ̇ = 0. We simplify Eq. (3.56) by applying the gyroaveraging

operator at constant R . This results in the gyrokinetic equation

∂〈Fa〉R

∂t
+ Ṙ ·∇〈Fa〉R + v̇∥

∂〈Fa〉R

∂v∥
= 〈C (Fa)〉R . (3.57)

In order to derive a moment-hierarchy model from the gyrokinetic equation, we write Eq. (3.57)

in a conservative form. We note that the gyrocenter phase-space volume element, B∗
∥ /ma ,

is conserved along the gyrocenter trajectories in phase-space (Brizard & Hahm, 2007) and,

therefore, satisfies Liouville’s theorem,

∂B∗
∥

∂t
+∇·

(
ṘB∗

∥
)
+ ∂

∂v∥

(
v̇∥B∗

∥
)
= 0. (3.58)

Using the conservation law for B∗
∥ in Eq. (3.58), from Eq. (3.57), we obtain

∂
(
B∗
∥ 〈Fa〉R

)
∂t

+∇·
(
ṘB∗

∥ 〈Fa〉R

)
+
∂
(
v̇∥B∗

∥ 〈Fa〉R

)
∂v∥

= B∗
∥ 〈C (Fa)〉R . (3.59)
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3.2 Gyrokinetic Moment-Hierarchy

We now simplify the solution of Eq. (3.59) by expanding the gyrocenter distribution function

in a Hermite-Laguerre polynomial basis, therefore extending the moment-hierarchy equation

derived in Chapter 2 to the gyrokinetic regime. We expand 〈Fa〉R as

〈Fa〉R =
∞∑

p, j=0

N
p j
a√

2p p !
F M a Hp (s∥a)L j (s2

⊥a), (3.60)

where all the quantities in Eq. (3.60) are evaluated at the gyrocenter coordinates Z, and the

gyrokinetic Maxwellian F M a is given by

F M a = N a

π3/2v th∥a v2
th⊥a

e−s2
∥a−s2

⊥a , (3.61)

with v2
th∥a = 2T ∥a/ma , v2

th⊥a = 2T ⊥a/ma , s∥a = (v∥−u∥a)/v th∥a and s2
⊥a =µB/T ⊥a . The evo-

lution for the coefficients N
p j
a are obtained by projecting the gyrokinetic equation, Eq. (3.59),

in a Hermite-Laguerre basis using the projector
∥∥χ∥∥∗lk

a , defined as

∥∥χ∥∥∗p j

a = 1

Na

∫
d v∥dµdθ

B∗
∥

ma
χ〈F a〉Hp (s∥a)L j (s2

⊥a). (3.62)

Similarly to Eq. (2.104), a relation between the moments N
∗p j
a = ‖1‖∗p j

a and the gyrocenter

moments N
p j
a can be obtained using the definition of B∗

∥ in Eq. (2.23), yielding

N
∗p j
a = ‖1‖∗p j

a = b ·B∗
a

B
N

lk
a + v th∥ab ·∇×bp

2Ωa

(p
l +1N l+1k

a +
p

l N
l−1k
a

)
. (3.63)

We now apply the projector
∥∥χ∥∥∗l k

a to the gyrokinetic equation, Eq. (3.59). By introducing

the convective fluid derivative

d∗lk
a

d t
= ∂

∂t
+

∥∥∥Ṙ
∥∥∥∗lk

a
·∇, (3.64)

the gyrokinetic moment equation hierarchy equation describing the evolution of the moments

N lk
a is given by

∂Na
∗lk

∂t
+∇·

∥∥∥Ṙ
∥∥∥∗l k

a
−

p
2l

v th∥a

∥∥v̇∥
∥∥∗l−1k

a +F lk
a =C lk

a , (3.65)

with C lk
a the Hermite-Laguerre moments of the Coulomb collision operator (subject of Chap-
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ter 4) and F l k
a the fluid operator

F l k
a = d∗lk

a

d t
ln

(
NaT

l /2
∥a T

k
⊥aB−k

)
+

√
p(p −1)

2

d∗l−2k
a

d t
lnT ∥a

−k
d∗lk−1

a

d t
ln

(
T ⊥a

B

)
+

p
2l

v th∥a

d∗l−1k
a

d t
u∥a . (3.66)

In order to simplify the evaluation of
∥∥∥Ṙ

∥∥∥∗l k

a
and

∥∥v̇∥
∥∥∗lk

a , we first rewrite the gyrokinetic

equations of motion present in the gyrokinetic equation as

Ṙ = Ṙ
∣∣

Z=Z +
b

B∗
∥
×∇

(
〈φ1〉R − q3

a

2maΩa

∂〈φ̃1
2〉R

∂µ

)
, (3.67)

and

v̇∥ = v̇∥
∣∣

Z=Z −qa
B∗

B∗
∥
·∇

(
〈φ1〉R − q3

a

2maΩa

∂〈φ̃1
2〉R

∂µ

)
, (3.68)

where Ṙ
∣∣

Z=Z and v̇∥
∣∣

Z=Z are the guiding-center equations of motion Eqs. (2.99) and (2.100)

evaluated at Z. We note that, in the second order Hamiltonian H2 in Eq. (3.46), we have

neglected the term b · 〈∇
(∫ θ dθ′φ̃1

)
×∇φ̃1〉/(qaΩa) as it can be shown to be always smaller

than ∂µ 〈φ̃1
2〉 by a factor of ρa |∇B/B | (Hahm et al., 2009). Therefore, the moments

∥∥∥Ṙ
∥∥∥∗lk

a
and∥∥v̇∥

∥∥∗lk

a can be expressed as

∥∥∥Ṙ
∥∥∥∗l k

a
= ∥∥Ṙ

∥∥∗lk
a

∣∣∣
Z=Z

+ b

B
×

∥∥∥∥∥ B

B∗
∥
∇〈φ1〉R

∥∥∥∥∥
∗l k

a

− q3
a

2maΩa

b

B
×

∥∥∥∥∥ B

B∗
∥

∂

∂µ
∇〈φ̃1

2〉R

∥∥∥∥∥
∗l k

a

, (3.69)

and

∥∥v̇∥
∥∥∗lk

a = ∥∥v̇∥
∥∥∗lk

a

∣∣∣
Z=Z

−qa ·
∥∥∥∥∥ B∗

B∗
∥
·∇〈φ1〉R

∥∥∥∥∥
∗l k

a

+ q4
a

2maΩa

∥∥∥∥∥ B∗

B∗
∥
· ∂
∂µ

∇〈φ̃1
2〉R

∥∥∥∥∥
∗l k

a

, (3.70)

with
∥∥Ṙ

∥∥∗lk
a and

∥∥v̇∥
∥∥∗l k

a given by Eqs. (2.108) and (2.109), respectively, with Z = Z and N lk
a =

N
lk
a .

We now derive an expression for the second and third terms appearing on the right-hand

side of Eqs. (3.69) and (3.70) as functions of moments N
lk
a of the distribution function. As a first

step, we derive an analytical formula for the Hermite-Laguerre moments of the gyroaveraged

electrostatic potential 〈φ1〉R and 〈φ̃1
2〉R . Considering that, at leading order, x ' R +ρa with
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ρa = ρa

(
Z

)
, we write φ1 by using its Fourier harmonics, that is

φ1(x) =
∫
φ1(k)e i k·R e i k·ρa dk. (3.71)

By taking advantage of the Jacobi-Anger expansion of Eq. (2.126), φ1(x) can be written as

φ1(x) =
∞∑

l=−∞
i l e i lθ

∫
φ1(k)e i k·R Jl (k⊥ρa)dk, (3.72)

and, integrating Eq. (3.72) over θ, the gyroaveraged electrostatic potential φ1 becomes

〈φ1〉R =
∫
φ1(k)e i k·R J0(k⊥ρa)dk. (3.73)

The µ and k⊥ dependence in the Bessel function J0(k⊥ρa) can be further decomposed by

introducing the parameter ρtha = v th⊥a/Ωa and noting that ρa =
√
µB/T ⊥aρtha = s⊥aρtha ,

which allows the use of the following identity between Bessel and Legendre functions (Grad-

shteyn & Ryzhik, 2007)

Jm(2ba s⊥a) = bm
a sm

⊥ae−b2
a

∞∑
r=0

Lm
r (s2

⊥a)

(m + r )!
b2r

a . (3.74)

with ba = k⊥ρtha/2. The zeroth order Bessel function can therefore be written in terms of

Laguerre polynomials as

J0(2ba s⊥a) =
∞∑

r=0
Kr (ba)Lr (s2

⊥a). (3.75)

with the Kernel function

Kr (ba) = b2r
a

r !
e−b2

a . (3.76)

We can then develop the velocity dependence of 〈φ1〉R explicitly in terms of Laguerre polyno-

mials as

〈φ1〉R =∑
l

Lr (s2
⊥a)

∫
φ1(k)e i k·R Kr (ba)dk. (3.77)

We now apply the projection operator to 〈φ1〉R , therefore evaluating
∥∥〈φ1〉R

∥∥∗l k

a . We note

that the evaluation of
∥∥〈φ1〉R

∥∥∗lk

a requires the calculation of an integral of the product of

three Laguerre polynomials. This is due to the fact that the projection operator ||..||∗p j
a in

Eq. (3.62) contains a Laguerre polynomial factor, one Laguerre polynomial comes from the

Hermite-Laguerre expansion of the distribution function, and the third Laguerre polynomial

is present due to the fact that the gyroaveraged electrostatic potential 〈φ1〉R in Eq. (3.77) is
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also composed of linear combination of Laguerre polynomials. We then express the product

of two Laguerre polynomials in terms of a single polynomial, therefore writing the product

Lk (x)Ln(x) as

Lk Ln =
|k+n|∑

s=|k−n|
αkn

s Ls , (3.78)

where the expansion coefficients αkn
s are determined by the Laguerre polynomial orthogonal-

ity relation Eq. (2.70)

αkn
s =

∫ ∞

0
d xe−x Lk (x)Ln(x)Ls(x). (3.79)

A closed formula of the coefficients αkn
s is given by (Gillis & Weiss, 1960)

αkn
s = (−1)k+n−s

∑
m

22m−k−n+s (k +n −m)!

(k −m)!(n −m)!(2m −k −n + s)!(k +n − s −m)!
, (3.80)

where the summation is over all possible values of m such that the factorials are definite-

positive. By applying the Hermite-Laguerre operator to Eq. (3.77), we obtain in Fourier har-

monics

1

Na

∥∥〈φ1〉R

∥∥∗lk

a =
∞∑

n=0
Dlkn

an (ba)φ1(k), (3.81)

where we introduce the FLR operator

D
lk j
an (ba) =

| j+k|∑
r=| j−k|

α
j k
r N

∗l r
Kn(ba). (3.82)

We can now derive an expression for the moments of the guiding-center velocity in

Eq. (3.69). Applying the projector operator, Eq. (3.62), to the gradient of 〈φ1〉R , we obtain, in

Fourier harmonics

b

Na
b×

∥∥∥∥∥ B

B∗
∥
∇〈φ1〉R

∥∥∥∥∥
∗lk

a

= b×
∞∑

n=0
Dl kn

an (ba ,k)φ1(k), (3.83)

where we introduce the FLR gradient operator

Dl k j
an (ba ,k) = i kD

lk j
an +∑

p

|p+k|∑
s=|p−k|

[(
δ

j
p −δ j−1

p

)
jαpk

s N l s
a ∇ ln

(
B

T ⊥a

)
Kn

+δ j
pα

pk
s N l s

a ∇ ln


√

T ⊥a

B

(
b2

a

2

)
(Kn−1 −Kn)

 . (3.84)
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The second order contribution 〈φ̃1
2〉R in Eq. (3.69) is rewritten using φ1 = 〈φ1〉R + φ̃1, yielding

〈φ̃1
2〉R = 〈φ2

1〉R −〈φ1〉2
R

. (3.85)

Furthermore, we convert the derivatives in µ in Eq. (3.69) to derivatives with respect to s2
⊥a , by

using

∂

∂µ
∇〈φ2

1〉R = B

T⊥a

∂〈φ2
1〉R

s2
⊥a

∇−∇
(

ln
T ⊥a

B

)
∂〈φ2

1〉R

∂µ
. (3.86)

We project both terms in Eq. (3.86) into a Hermite-Laguerre basis. For the first term, we use

the identity

1

Na

∥∥∥∥∥∂〈φ2
1〉

∂µ

∥∥∥∥∥
lk

a

=− B

T ⊥a

∫
dkk′e i (k+k′)·R ∞∑

n=1

n−1∑
j=0

D l k j
an (ba +b′

a)φ1(k)φ(k′), (3.87)

for the projection of 〈φ2
1〉R and

1

Na

∥∥∥∥∥∂〈φ1〉2
R

∂µ

∥∥∥∥∥
lk

a

=− B

T ⊥a

∫
dkdk′e i (k+k′)·R ∞∑

n,n′=0

|n+n′|∑
r=|n−n′|

r 6=0

×αnn′
r

r−1∑
s=0

D l ks
ann′(ba ,b′

a)φ1(k)φ1(k′), (3.88)

for 〈φ1〉2
R

, with the D l k j
ann′(ba ,b′

a) operator given by

D lk j
ann′(ba ,b′

a) =
| j+k|∑

t=| j−k|
α

j k
t Kn(ba)Kn′(b′

a)N l t
a . (3.89)

Finally, for the second term in Eq. (3.86), we use the identities

1

Na

∥∥∥∥∥∇∂〈φ2
1〉

∂s2
⊥a

∥∥∥∥∥
l k

a

=−
∫

dkdk′e i (k+k′)·R ∞∑
n=1

n−1∑
j=0

Dlk j
an (ba +b′

a ,k+k′)φ1(k)φ1(k′), (3.90)

and

1

Na

∥∥∥∥∥∇∂〈φ1〉2
R

∂s2
⊥a

∥∥∥∥∥
lk

a

=−
∫

dkdk′e i (k+k′)·R

×
∞∑

n,n′=0

|n+n′|∑
r=|n−n′|

r 6=0

r−1∑
s=0

αnn′
r Dl ks

ann′(ba ,b′
a ,k,k′)φ1(k)φ1(k′), (3.91)
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where the FLR gradient operator Dlk j
ann′(ba ,b′

a ,k,k′) is defined by

Dl k j
ann′ =

∑
p

|p+k|∑
t=|p−k|

[
δ

j
pα

pk
t N l t

a Kn(ba)Kn′(b′
a)i (k+k′)

+δ j
pα

pk
t N l t

a ∇ ln


√

T ⊥a

B

(
nKn(ba)Kn′(b′

a)+n′Kn′(b′
a)Kn(ba)

)
+

[(
δ

j
p −δ j−1

p

)
jαpk

t N l t
a ∇ ln

(
B

T ⊥a

)

−δ j
pα

pk
t N l s

a ∇ ln


√

T ⊥a

B

 b2
a +b′2

a

2

Kn(ba)Kn′(b′
a)

 . (3.92)

In Eq. (3.92), we define b′
a = k ′

⊥ρtha . The identities above to obtain the gyrokinetic corrections

to the projection of the guiding-center velocities and accelerations in Eqs. (3.69) and (3.70)

analytically in terms of moments N
lk
a of the distribution function Fa .

3.3 Gyrokinetic Poisson’s Equation

In order to evaluate the electrostatic potential φ appearing in the moment-hierarchy equation,

Eq. (3.65), we derive a Hermite-Laguerre formulation of the Poisson’s equation valid at k⊥ρs ∼ 1

in gyrocenter coordinates. We start from Eq. (2.127) and use the pullback operator in Eq. (3.23)

to write the guiding-center distribution function Fa in terms of the gyrocenter distribution

function Fa in guiding-center coordinates. This yields

Fa(Z) = Fa(Z)+gR
1 ·∇Fa(Z)+ g ∥

1

∂Fa(Z)

∂v∥
+ gµ1

∂Fa(Z)

∂µ
+ g θ1

∂Fa(Z)

∂θ
. (3.93)

Similarly to Section 2.5, we neglect the gyrophase dependence of the distribution function

F̃a < ε2 〈Fa〉R . For consistency, we also neglect higher order contributions in Eq. (3.93) as they

can be shown to be higher order (Hahm et al., 2009; Madsen, 2013a). We therefore write

Fa(Z) ' 〈Fa〉R + q2
a

B
φ̃1
∂〈Fa〉R

∂µ
. (3.94)

By plugging Eq. (3.94) in Poisson’s equation, Eq. (2.127), we obtain

ε0∇·E =∑
a

qa(NaR +Naµ), (3.95)

with NaR the gyrocenter density

NaR =
∫

e i k·R B∗
∥

ma
J0(k⊥ρa)〈Fa〉R d v∥dµdk, (3.96)

60



3.4. Conclusion

and Naµ the polarization density

Naµ =
∫

d v∥dµdθ
B∗
∥

ma

q2
a

B
Γ0

[
φ̃1
∂〈Fa〉R

∂µ

]
, (3.97)

withΓ0 defined by Eq. (2.128). In the expression for NaR , Eq. (3.96), we use the relation between

Bessel functions and Laguerre polynomials, Eq. (3.75), and write NaR in Fourier harmonics as

NaR =∑
n

Kn(ba)N
∗0n
a . (3.98)

For the polarization density Naµ, we expand both φ1 and 〈Fa〉 in Fourier harmonics, yielding

Naµ(R) = qa N a

T ⊥a

[ ∞∑
n=1

n−1∑
m=0

Kn(ba)φ1(R)N
∗0m
a (k)

−
∞∑

s,r=0

|s+r |∑
t=|s−r |

t 6=0

αsr
t

t−1∑
p=0

∫
e i k′·R Ks(ba +b′

a)Kr (b′
a)N

∗0p
a (k′)δ(k)

 . (3.99)

We note that, in the drift-kinetic limit φ1 = 0 and k⊥ρs ¿ 1, the Poisson’s equation in Eq. (3.95)

reduces to the one in Eq. (2.132).

3.4 Conclusion

In this chapter, a full-F gyrokinetic moment-hierarchy is derived, able to evolve the turbulent

plasma dynamics in the tokamak periphery. The moment-hierarchy equation is derived

from a gyrokinetic equation where second order corrections with respect to the drift-kinetic

equations are included to describe k⊥ρs ∼ 1 fluctuations. The equations of motion are derived

by using the perturbation approach provided by the Lie transform framework. We describe the

main elements of this approach. This allows us to describe the evolution of the coefficients

of the Hermite-Laguerre expansion of the gyrokinetic distribution function analytically in

terms of moments of the distribution function, including the gyroaveraging of the electrostatic

potential. Finally, a Poisson’s equation valid in the gyrokinetic k⊥ρs ∼ 1 regime is derived.
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4 Full Coulomb Gyrokinetic Collision
Operator in the Moment Expansion

Due to the lower temperature values and associated high collisionality with respect to the core,

the use of a gyrokinetic model to simulate the plasma dynamics in the tokamak periphery

requires an accurate collision operator. In fact, collisions set the level of neoclassical transport

and strongly influence the turbulent dynamics by affecting the linear growth rate and nonlinear

evolution of turbulent modes (Hirshman & Sigmar, 1981; Lin et al., 2004; Barnes et al., 2009).

Since the first formulations of the gyrokinetic theory, there have been significant research

efforts to take collisions into account (Catto & Tsang, 1977; Brizard, 2004; Abel et al., 2008;

Barnes et al., 2009; Li & Ernst, 2011; Estève et al., 2015). The first effort devoted to a gyrokinetic

collision operator can be traced back to the work of Catto & Tsang (1977), later improved by

Abel et al. (2008) by adding the terms needed to ensure non-negative entropy production.

These works lead to a linearized gyrokinetic collision operator model was proposed that

contained pitch-angle scattering effects and important conservation properties. A linearized

gyrokinetic Coulomb collision operator derived from first principles was then presented in Li

& Ernst (2011) and Madsen (2013b).

As turbulence in the tokamak periphery region is essentially nonlinear and the level of

collisions is not sufficient for a local thermalization, the distribution function may signifi-

cantly deviate from a local Maxwellian distribution (Tskhakaya, 2012). Therefore, a nonlinear

full-F formulation of the gyrokinetic collision operator is crucial to adequately describe the

dynamics in this region. Only recently several theoretical studies have emerged in order to

derive full-F collisional gyrokinetic models that keep conservation laws in their differential

form, by providing a Poisson bracket formulation of the full nonlinear Coulomb collision

operator (Brizard, 2004; Sugama et al., 2015; Burby et al., 2015). However, the presence of a six-

dimensional phase-space integral in these formulations of the nonlinear Coulomb collision

operator makes their numerical implementation still extremely difficult.

In this chapter, the gyrokinetic Coulomb collision operator is derived in the gyrokinetic

regime in terms of a two-dimensional velocity integral only, that can be efficiently imple-

mented in numerical simulation codes. The derivation of the full Coulomb collision operator

described here is based on a multipole expansion of the Rosenbluth potentials. This allows us
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to write the Coulomb collision operator in terms of moments of the distribution function and

apply the gyroaverage operator to the resulting expansion. The Coulomb collision operator

and its moments are then expressed in terms of two-dimensional (v∥ and µ) integrals of the

distribution function. We show that the gyroangle dependence of the expansion coefficients

can be given in terms of scalar spherical harmonics Ylm(ϕ,θ) with ϕ and θ the polar and the

azimuthal (gyroangle) respectively. This allows the gyroaverage integrations to be performed

analytically at arbitrary values of the perpendicular wavevector k⊥. Furthermore, inline with

the previous chapters, the distribution function is expanded in a Hermite-Laguerre polynomial

basis, and the Coulomb collision operator is projected on the same basis.

This chapter is organized as follows. Section 4.1 derives the gyrokinetic equation up to

second order in ε including collisional dynamics, and Section 4.2 presents the multipole

expansion of the Coulomb collision operator. In Section 4.3, the Coulomb operator is ported

to a gyrocenter coordinate system, while Section 4.4 makes use of the Hermite-Laguerre

polynomial basis to obtain a closed form expression for the gyrocenter velocity moments of

the Coulomb collision operator. The moment expansion of the unlike-species gyrokinetic

collision operator is presented in Section 4.5 using an expansion based on the smallness of

the electron-to-ion mass ratio. The conclusions follow.

4.1 Gyrokinetic Collisional Ordering

The evolution of the gyrokinetic distribution function 〈Fa〉 is given by the gyrokinetic equation,

Eq. (3.57). We note that the collisional term decouples the evolution of 〈F a〉R a F a . To make

further progress, we estimate the order of magnitude of the gyrophase dependent part of the

distribution function F̃a = Fa −〈Fa〉R, where Fa obeys Eq. (3.56) and 〈Fa〉R Eq. (3.57). In order

to estimate the amplitude of F̃a , we note that the equation for the evolution of F̃a = Fa −〈Fa〉R

can be obtained by subtracting Eq. (3.57) from Eq. (3.56), yielding

∂F̃a

∂t
+ Ṙ · ∂F̃a

∂R
+ v̇∥

∂F̃a

∂v∥
+ θ̇ ∂F̃a

∂θ
=∑

b
C (Fa ,Fb)−〈C (Fa ,Fb)〉R . (4.1)

To lowest order, θ̇∂θF̃a ∼ Ωa F̃a and ∂t ∼ Ṙ · ∇R ∼ v̇∥∂v∥ ∼ εΩi . The estimate of the col-

lisional term on the right-hand side of Eq. (4.1) is more delicate. Ordering C (Fa ,Fb) =
C0(Fa ,Fb)+εδC1(Fa ,Fb)+ ... with C0(Fa ,Fb) ∼ νaFa , and noting that the first order gyrocenter

transformation Z1 in Eq. (3.7) is mass dependent (i.e., gν1e ∼ gν1i

p
me /mi ), the magnitude of

the Coulomb collision operator for electrons can be estimated as

C (F e ,Fb) ∼ νe F e (Z) ∼ ενΩi F e (Z)+O

[
εεδ

√
me

mi
Ωi F e (Z)

]
. (4.2)
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A similar argument holds for the ions, yielding

C (F i ,Fb) ∼ νi F i (Z) ∼
√

me

mi
νe Fi (Z) ∼

√
me

mi
ενΩi F i (Z)+O

[
εεδ

√
me

mi
Ωi F i (Z)

]
. (4.3)

Equations (4.2) and (4.3) show that the lowest order collision operator C0(Fa ,Fb) is, in fact,

O(ε2), as the next term in the expansion of C (Fa ,Fb) is O(ε2pme /mi ). Therefore, in this

chapter, when describing the Z dependence of the distribution function F a and F b in the

collision operator C (F a ,F b), we use the lowest order approximation Z ' Z. Using the orderings

of Eqs. (4.2) and (4.3), we obtain

F̃ e

〈F e〉R

∼ me

mi
εν < ε2, (4.4)

and

F̃ i

〈F i 〉R

∼
√

me

mi
εν < ε2. (4.5)

showing that, up to second order in ε, the gyroangle dependence of the distribution function

can be neglected in Eq. (3.57). We remark that a similar estimate for the gyrophase depen-

dent part of the guiding-center distribution function Fa was found in Eqs. (2.44) and (2.45).

Therefore, a leading order estimate of Eq. (4.1) leads to

F̃a ∼ 1

Ωa

∑
b

∫ θ

0

[
C0

(
〈Fa〉R ,〈Fb〉R

)
−〈C0

(
〈Fa〉R ,〈Fb〉R

)
〉

R

]
dθ

′
. (4.6)

Finally, by taking Ṙ and v̇∥ to be at most O(ε2) accurate, the gyrokinetic equation valid up to

second order in ε can be written as

∂

∂t
〈Fa〉R + Ṙ · ∂

∂R
〈Fa〉R + v̇∥

∂

∂v∥
〈Fa〉R =∑

b

〈C0(〈Fa〉R ,〈Fb〉R)〉R . (4.7)

We note that although in Eq. (4.7) only the lowest order in εδ collision operator is used, i.e.,

C0(〈Fa〉R ,〈Fb〉R), all orders in k⊥ρs are kept.

4.2 Multipole Expansion of the Coulomb Collision Operator

The goal of this section is to find a suitable basis to expand fa such that the Coulomb operator

in Eq. (2.32) can be cast into a sum of moments of fa . We start by noting that the Rosenbluth

potential Hb in Eq. (2.33) is analogous to the expression of the electrostatic potential due to

a charge distribution, a similarity already noted by Rosenbluth et al. (1957). This fact allows

us to make use of known electrostatic expansion techniques (Jackson, 1998) to perform a

multipole expansion of the Rosenbluth potentials. We first Taylor expand the factor 1/|v−v′|
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in Eq. (2.33) around v = 0 if v ≤ v ′ or around v′ = 0 if v > v ′, yielding

1

|v−v′| =


∞∑

l=0

(−v′)l

l !
· ∂

l

∂vl

(
1

v

)
, v ′ ≤ v,

∞∑
l=0

(−v)l

l !
· ∂l

∂(v′)l

(
1

v ′

)
, v < v ′.

(4.8)

where we used the identity ∂v(1/|v− v′|)v=0 = −∂v′(1/v ′). Both v ≤ v ′ and v > v ′ cases are

included in order to take into account the fact that fb(v′) is, in general, finite over the entire

velocity space v′. Denoting Yl (v) the spherical harmonic tensor (Weinert, 1980)

Yl (v) = (−1)l v2l+1

(2l −1)!!

(
∂

∂v

)l 1

v
, (4.9)

we obtain the following form for Hb

Hb = 2
∞∑

l=0

(2l −1)!!

l !

(∫
v>v ′

fb(v′)
(v′)l

v2l+1
·Yl (v)dv′+

∫
v ′≥v

fb(v′)
(v)l

(v ′)2l+1
·Yl (v′)dv′

)
. (4.10)

In order to simplify Eq. (4.10), we note that the tensor Yl (v) = Y l
αβ...γ(v) is symmetric and

totally traceless, i.e., traceless between any combination of two of its indices. Symmetry

arises from the fact that the indices in Y l
αβ...γ(v) are interchangeable as the velocity derivatives

commute for v 6= 0. The traceless feature, i.e.,
∑
αY l

αα...γ(v) = 0 between any pairs of indices,

stems from the fact that the contraction between any two indices in Y l
αβ...γ(v) leads to the

multiplicative factor ∇2
v = ∂v ·∂v(1/v) which vanishes for v 6= 0. In the reasoning above, we

exclude the value of v = 0 since the classical distance of closest approach should be smaller

than the Debye length, which effectively limits the maximum impact parameter (hence the

minimum velocity) for small-angle deflections in the plasma (Li & Ernst, 2011). Furthermore,

by defining the tensor (v)l
TS as the traceless symmetric counterpart of (v)l [e.g., (v)2

TS = vv−
Iv2/3 with I the identity matrix], we replace the tensors (v′)l and (v)l in Eq. (4.10) by their

traceless symmetric counterpart (v′)l
TS and (v)l

TS respectively

Hb = 2
∞∑

l=0

(2l −1)!!

l !

(∫
v>v ′

fb(v′)
(v′)l

TS

v2l+1
·Yl (v)dv′+

∫
v ′≥v

fb(v′)
(v)l

TS

(v ′)2l+1
·Yl (v′)dv′

)
, (4.11)

as they differ only by terms proportional to the identity matrix that vanish when summed

with Yl (v) and Yl (v′) [e.g., (v2 − (v)2
TS) · Y2(v) = (v2/3)I · Y2(v) = (v2/3)

∑
αY 2

αα = 0]. Finally,

we relate the tensors (v)l
TS and Yl (v). For l = 0 and l = 1, we have Y0(v′) = (v′)0

TS = 1 and

Y1(v′) = (v′)1
TS = v′. For l = 2, applying Eq. (4.9), we obtain

Y2(v′) = v′v′− v ′2

3
I = (v′)2

T S . (4.12)

The results obtained for l = 0,1 and 2 can be generalized, i.e., (v′)l
TS = Yl (v′) as proved by
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induction (Weinert, 1980). The Rosenbluth potential Hb can therefore be written as

Hb = 2
∞∑

l=0

(2l −1)!!

l !
Yl (v)·

[
1

(v2)l+1/2

∫
v ′<v

fb(v′)Yl (v′)dv′+
∫

v ′≥v
fb(v′)

Yl (v′)
[(v ′)2]l+1/2

dv′
]

. (4.13)

The first term in Eq. (4.13) can be regarded as the potential due to the charge distribution

fb(v′) inside a sphere of radius v , while the second term is the potential due to a finite charge

distribution fb(v′) at v ′ ≥ v .

We now look for an expansion of fb that allows us to perform the integrals in Eq. (4.13)

analytically by writing Hb as a sum of velocity moments of fb . We consider the basis functions

Ylk (v) = Yl (v)Ll+1/2
k (v), (4.14)

with Ll+1/2
k (v) an associated Laguerre polynomial. The basis Ylk (v) is orthogonal, with its

orthogonality relation given by (Banach & Piekarski, 1989; Snider, 2017)∫
e−v2

Yl ′k ′
(v)Ylk (v)dv ·Tl k = δl l ′δkk ′π3/2σl

k Tlk , (4.15)

where Tlk is an arbitrary symmetric and traceless tensor, and σl
k a normalization constant

σl
k = l !(l +k +1/2)!

2l (l +1/2)!k !
. (4.16)

A proof that Yl k (v) is also a complete basis can be found in Banach & Piekarski (1989), where

the equivalence between Grad’s moment expansion in tensorial Hermite polynomials (which

forms a complete basis) and Ylk (v) was shown. We then write fb as

fb = fMb

∞∑
l ,k=0

Ylk
b

(
v

vthb

)
· Mlk

b

σl
k

, (4.17)

with fMb a Maxwellian

fMb = nbe
− v2

v2
thb

v3
thbπ

3/2
, (4.18)

and, according to Eq. (4.15), the coefficients Ml k
b obtained by taking velocity moments of fb of

the form

Mlk
b = 1

nb

∫
fb(v)Yl k

b

(
v

vthb

)
dv. (4.19)

Finally, we note that Eq. (4.17) allows us to retain only the l = k = 0 moment in when the

plasma is in thermal equilibrium.

Plugging the expansion for fb of Eq. (4.17) in Eq. (4.13), the following expression for Hb is
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obtained

Hb = nb

vthbπ3/2

∑
l ,l ′,k

(2l −1)!!

l !σl ′
k

×
(

Yl (v̂)

x(l+1)/2
b

·
∫ xb

0
e−x Ll ′+1/2

k (x)x(l+l ′+1)/2d x
∫

Yl (v̂ ′)Yl ′(v̂ ′)dσ′ ·Ml ′k
b

+x l /2
b Yl (v̂) ·

∫ ∞

xb

e−x Ll+1/2
k (x)d x

∫
Yl (v̂ ′)Yl ′(v̂ ′)dσ′ ·Ml ′k

b

)
, (4.20)

where we define xb = v2/v2
thb the normalized velocity, σ the solid angle such that dv =

v2d vdσ, and use the relation Yl (v) = v l Yl (v̂) with v = v v̂ (Weinert, 1980). We note that

Yl (v̂) and Yl (v) are species independent, and therefore the species subscript is suppressed. Ap-

plying the orthogonality relation of Eq. (4.15) for k = 0, and expanding the associated Laguerre

polynomials using Eq. (2.69), we write Hb as

Hb = 2nb

vthb

∑
l ,k

k∑
m=0

Ll
km

σl
k

Yl (v̂) ·Ml k
b

2l +1

× 1p
π

(
1

x(l+1)/2
b

∫ xb

0
e−x xm+l+1/2d x +x l /2

b

∫ ∞

xb

e−x xmd x

)
, (4.21)

where the identity

(2l −1)!!

2l (l +1/2)!
= 2p

π

1

2l +1
, (4.22)

is used to simplify Eq. (4.21).

The expression of Hb in Eq. (4.21) corresponds to the one in Ji & Held (2006), having

replaced the Yl (v) tensors by the Pl (v) tensors which are defined by the recursion relation [see

Eq. (14) of Ji & Held (2006)]

Pl+1(v) = vPl (v)− v2

2l +1

∂

∂v
Pl (v), (4.23)

with P0(v) = 1 and P1(v) = v. We can indeed prove that Yl (v) = Pl (v) by deriving the tensor

Yl (v) using Eq. (4.9), yielding

∂

∂v
Yl (v) = (−1)l

(2l −1)!!

[
(2l +1)v2l−1v

∂l

∂vl

1

v
+ v2l+1 ∂l+1

∂v2l+1

1

v

]

= 2l +1

v2

[
v

v2l+1(−1)l

(2l −1)!!

∂l

∂vl

1

v
− (−1)l+1v2(l+1)+1

(2l +1)!!

∂l+1

∂vl+1

1

v

]

= 2l +1

v2

[
vYl (v)−Yl+1(v)

]
. (4.24)

Equation (4.24) is the same recursion relation as Eq. (4.23). As Y0(v) = P0(v) = 1 and Y1(v) =
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P1(v) = v, the proof is complete.

The integrals in Eq. (4.21) can be put in terms of lower

I k
− = 1p

π

∫ xb

0
d xe−x x(k−1)/2, (4.25)

and upper

I k
+ = 1p

π

∫ ∞

xb

d xe−x x(k−1)/2, (4.26)

incomplete gamma functions (Abramowitz et al., 1965), yielding

Hb = 2nb

vthb

∑
l ,k

k∑
m=0

Ll
km

σl
k

Yl (v̂) ·Ml k
b

2l +1

(
I 2l+2m+2+
x(l+1)/2

b

+x l/2
b I 2m+1

−

)
. (4.27)

A procedure similar to the one used to obtain Eq. (4.27) can be followed for Gb by expanding the

distribution function fb appearing in the second Rosenbluth potential Gb and using Eq. (4.17),

therefore obtaining

Gb = 2nb

vthb

∑
l ,k

k∑
m=0

Ll
km

σl
k

Yl (v̂) ·Mlk
b

2l +1

[
1

2l +3

(
I 2l+2m+4+
x(l+1)/2

b

+x l /2+1
b I 2m+1

−

)

− 1

2l −1

(
I 2l+2m+2+
x(l−1)/2

b

+x l/2
b I 2m+3

−

)]
.

(4.28)

Having derived a closed form expression for the Rosenbluth potentials, we now turn to the

full Coulomb collision operator. We first note that, although the Rosenbluth potentials Hb and

Gb are linear functions of fb , the Coulomb collision operator is, in fact, bilinear in fa and fb .

In order to rewrite the Coulomb collision operator in Eq. (2.32) in terms of a single spherical

harmonic tensor Yl (v), we make use of the following identity between symmetric traceless

tensors (Ji & Held, 2009)

[Yl−u(v̂)·Mlk
a ]·u [Yn−u(v̂)·Mnk

a ] =
mi n(l ,n)−u∑

i=0
d l−u,n−u

i Yl+2n−2(i+u)(v̂)·
(
Ml k

a ·i+u Mnq
b

)
T S

, (4.29)

where ·n is the n-fold inner product [e.g., for the matrix A = Ai j , (A ·1 A)i j =∑
k Aki Ak j ]. The

d l ,n
i coefficient can be written in terms of the coefficient

t l ,n
i = l !n!(−2)i (2l +2n −2i )!(l +n)!

(2l +2n)!i !(l − i )!(n − i )!(l +n − i )!
, (4.30)

as

d l ,n
i = ∑

i j |∑h
j=1 i j=i

(−1)h
h∏

j=1
t

l−∑ j−1
g=1 ig ,n−∑ j−1

g=1 ig

i j
. (4.31)
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Expanding fa and fb using Eq. (4.17), the expression for the Rosenbluth potentials in Eqs. (4.27)

and (4.28), and the identity in Eq. (4.29), the collision operator in Eq. (2.32) can be rewritten in

terms of products of Mlk
a and Mlk

b , as shown in Eq. (2.72), that is

C ( fa , fb) = faM

∞∑
l ,k,n,q=0

k∑
m=0

q∑
r=0

Ll
km

σl
k

Ln
qr

σn
q

c lkmnqr
ab , (4.32)

with

c lkmnqr
ab =

min(2,l ,n)∑
u=0

νlm,nr
∗abu (v2)

mi n(l ,n)−u∑
i=0

d l−u,n−u
i Yl+2n−2(i+u)(v̂) ·

(
Ml k

a ·i+u Mnq
b

)
T S

. (4.33)

The quantity νlm,nr
∗abu consists of a linear combination of I l+ and I l− integrals and its derivatives,

which can be written as linear combinations of the error function and its derivatives. Their

expressions are reported in Ji & Held (2009). Equation (4.33) corresponds to Eq. (2.73) with

Y l+2n−2(i+u)(v̂) replaced by P l+2n−2(i+u)(v̂).

4.3 Gyrokinetic Coulomb Collision Operator

In Section 4.2, the Coulomb collision operator is cast in terms of velocity moments of the

multipole expansion of the particle distribution function f . We now express it in terms of

the gyrokinetic distribution function 〈Fa〉R . As a first step, the gyroangle dependence of the

basis functions Yl k is found explicitly by using a coordinate transformation from particle

phase-space coordinates (x,v) to the guiding-center coordinate system Z. This allows us to

decouple the fast gyromotion time associated with the gyroangle θ from the typical plasma

turbulence time scales. The multipole moments Mlk can then be written in terms of guiding-

center velocity moments of the guiding-center distribution function 〈Fa〉R for arbitrary values

of k⊥ρs . As a second step, the gyrocenter coordinate system Z is introduced by using the

coordinate transformation T of Eq. (3.7). As shown in Section 4.1, up to second order in ε, only

the lowest order collision operator C0 needs to be retained. This allows us to straightforwardly

obtain the gyrokinetic collision operator from the guiding-center one by a simple coordinate

relabeling.

We first derive the polar and azimuthal angle (gyroangle) dependence of the Yl (v) tensor

in terms of scalar spherical harmonics. This is useful to analytically perform the gyroaverage

of the collision operator in the Boltzmann equation, Eq. (4.7). We first show that the Laplacian

of Yl (v) vanishes, i.e., that Yl (v) are harmonic tensors. By applying the operator ∇2
v to Yl (v)

defined in Eq. (4.9), and recalling that ∇2
v(1/v) = 0 for v 6= 0, we obtain

∇2
vYl (v) = 2(−1)l (2l +1)v2l+1

(2l −1)!!

[
(l +1)

(
∂

∂v

)l 1

v
+v ·

(
∂

∂v

)l+1 1

v

]
= 0, (4.34)
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since

v ·
(
∂

∂v

)l+1 1

v
=−(l +1)

(
∂

∂v

)l 1

v
, (4.35)

as can be proved by induction (Weinert, 1980). The angular dependence of Yl (v) can be

found by expressing the Laplacian of Eq. (4.34) in spherical coordinates. Using the fact that

Yl (v) = v l Yl (v̂), we obtain

0 =∇2
vYl (v) =∇2

v[v l Yl (v̂)]

= Yl (v̂)

(
∂2

∂v2 + 2

v

∂

∂v

)
v l − v l−2L2Yl (v̂), (4.36)

where L2 is the angular part of ∇2
v multiplied by v2

L2 = 1

sinϕ

∂

∂ϕ

(
sinϕ

∂

∂ϕ

)
+ 1

sinϕ2

∂2

∂θ2 , (4.37)

with ϕ and θ that can be chosen to correspond to the pitch and the gyroangle, respectively,

defined in Eq. (2.8). Performing the scalar v derivatives in Eq. (4.36), the following differential

equation for Yl (v) is obtained

L2Yl (v̂) = l (l +1)Yl (v̂). (4.38)

We identify Eq. (4.38) as the eigenvalue equation for the scalar spherical harmonics Yl m(ϕ,θ)

(Arfken et al., 2013). Therefore, using Eq. (4.38), and denoting elm the basis elements of Yl (v)

(an elementary derivation of the basis tensors elm is shown in Appendix C), we write Yl (v) as

Yl (v) = v l

√
2π3/2l !

2l (l +1/2)!

l∑
m=−l

Ylm(ϕ,θ)elm . (4.39)

Having derived the gyroangle dependence of the Yl (v) tensors, we now compute the fluid

moments Mlk
a in terms of v∥ and µ moments of the guiding-center distribution function 〈Fa〉.

We first consider a vanishing Larmor radius ρ = 0. Using Eq. (4.19) and considering that, up to

second order in ε, fa(x,v) = 〈Fa〉x [see Eqs. (2.44) and (2.45)], we obtain

naMlk
a =

∫
〈Fa〉〈Yl k

a 〉x dv. (4.40)

The operator 〈...〉x is the gyroaverage operator holding x = R+ρ, µ and v∥ fixed while averaging

over θ. This is opposed to the operator 〈...〉R, where all Z coordinates but θ are kept fixed. The

two operators coincide in the zero Larmor radius limit, ρ = 0. Using Eq. (4.39), the gyroaverage
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of the tensors Ylk
a holding x fixed is given by

〈Yl k〉x = v l Ll+1/2
k (v2)

√
2π3/2l !

2l (l +1/2)!

l∑
m=−l

〈Ylm(ϕ,θ)〉x elm . (4.41)

By rewriting the spherical harmonics Ylm(ϕ,θ) in terms of associated Legendre polynomials

P m
l (cosϕ) as (Abramowitz et al., 1965)

Yl m(ϕ,θ) = (−1)m

√
(2l +1)

4π

(l −m)!

(l +m)!
P m

l (cosϕ)e i mθ, (4.42)

and noting that, for m = 0, P 0
l (cosϕ) = Pl (cosϕ) with Pl a Legendre polynomial of order l , we

obtain

〈Yl k〉x = v l Ll+1/2
k (v2)Pl (cosϕ)

√
π1/2l !(l +1/2)

2l (l +1/2)!
el 0. (4.43)

The gyroaveraged formula Eq. (4.43) proves Eq. (20) of Ji & Held (2006) where el0 is replaced

by Pl (b). The fluid moments in Eq. (4.40) can therefore be written as

naMlk
a =

√
π1/2l !(l +1/2)

2l (l +1/2)!
el 0

∫
〈Fa〉v l Ll+1/2

k (x2
a)Pl (cosϕ)d v∥dµ. (4.44)

Using Eq. (4.17), the gyroaveraged distribution function at fixed x can be written as

〈 fa〉x = fM a

∞∑
l ,k=0

√
π1/2l !(l +1/2)

2l (l +1/2)!
el0 · Mlk

a

σl
k

v l Ll+1/2
k (x2

a)Pl (cosϕ). (4.45)

Equation (4.45) proves the gyroaveraged formulas for 〈 f 〉 used to derive closures for fluid

models at arbitrary collisionality in the vanishing Larmor radius limit in Ji et al. (2009, 2013); Ji

& Held (2014).

In order to perform the velocity integration in the definition of the moments Mlk at

arbitrary k⊥ρ in guiding-center phase-space coordinates, we introduce the identity f (x) =∫
f (x′)δ(x− x′)dx′ imposing x′ = R+ρ, and writing the volume element in phase-space as

dx′dv = (B∗
∥ /m)dRd v∥dµdθ, we obtain

naMl k
a (x) =

∫
fa(R+ρa ,v)Ylk

a (v/vtha)δ(x−R−ρa)
B∗
∥

m
dRd v∥dµdθ. (4.46)

Using Eq. (2.39), noting that v = v(Z) due to Eq. (2.8), and performing the integral over R in

Eq. (4.46), it follows that

naMl k
a (x) =

∫
Fa(x−ρa , v∥,µ,θ)Yl k

a [v(x−ρa , v∥,µ,θ)/vtha]
B∗
∥

m
d v∥dµdθ. (4.47)
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Using the orderings in Eqs. (4.4) and (4.5) for the guiding-center distribution function Fa ,

we remove the θ dependence from Fa by approximating Fa ' 〈Fa〉R, effectively neglecting

second order effects in ε in Mlk
a , hence in the collision operator C ( fa , fb). To make fur-

ther analytical progress, we represent Fa(R, v∥,µ,θ) by its Fourier transform Fa(k, v∥,µ,θ) =∫
Fa(R, v∥,µ,θ)e−i k·RdR, and write

naMlk
a (x) =

∫
〈Fa(k, v∥,µ,θ)〉R Yl k [v(x−ρa , v∥,µ,θ)/vtha]e i k·xe−i k·ρ B∗

∥
m

dkd v∥dµdθ. (4.48)

By aligning the k coordinate system in the integral of Eq. (4.48) with the axes (b,e1,e2) [see

Eq. (2.8)], we write exp(−i k ·ρ) = exp(−i k⊥ρ cosθ). We then use the Jacobi-Anger expansion

in Eq. (2.126), and rewrite Eq. (4.48) as

naMlk
a (x) =

∞∑
p=−∞

(−1)p
∫

Jp (k⊥ρ)〈Fa(k, v∥,µ,θ)〉R e i k·x

×Ylk [v(x−ρa , v∥,µ,θ)/vtha]e−i pθ
B∗
∥

m
dkd v∥dµdθ.

(4.49)

The spatial dependence R of the particle velocity v(Z), as shown in Eqs. (2.8) and (2.11), is

given uniquely by the basis vectors b,e1, and e2, and the magnetic field B . Therefore, the

velocity v in the argument of Ylk
a in Eq. (4.49) can be expanded as

v(x−ρa , v∥,µ,θ) = v(x, v∥,µ,θ)+O(ρa ·∇ logB). (4.50)

The second term in Eq. (4.50) introduces higher order terms in the collision operator and is

therefore neglected.

Using Eq. (4.39) to express Ylk
a (v) in terms of spherical harmonics, we perform the gyroan-

gle integration in Eq. (4.48), and define the Bessel-Fourier operator

jm[Fa] ≡
∫

Jm(k⊥ρa)〈Fa(k, v∥,µ,θ)〉R e i k·xdk, (4.51)

to obtain the final expression for the fluid moments Mlk
a in terms of coupled v∥ andµmoments

of the guiding-center distribution function 〈Fa〉R

naMlk
a (x) =

√
8π7/2l !

2l (l +1/2)!

l∑
m=−l

elm(−1)mM lk
am(x), (4.52)

with

M l k
am(x) =

∫
jm[Fa]v l Ll+1/2

k (x2
a)Yl m(ϕ,0)

B∗
∥

m
d v∥dµ. (4.53)

Equation (4.52) can now be used to express the collision operator C ( fa , fb) in terms of v∥
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and µ integrals of 〈Fa〉. Using Eqs. (4.32), (4.33) and (4.39), and defining

E l snt
i v = el+n−2i v · (el s ·i ent )T S , (4.54)

we can write the collision operator in Eqs. (4.32) and (4.33) as a function of the M l k
am moments,

i.e., we can express

c lkmnqr
ab =

min(2,l ,n)∑
u=0

min(l ,n)−u∑
i=0

d l−u,n−u
i aln

i+u

l∑
s=−l

n∑
t=−n

l+n−2i−2u∑
v=−(l+n−2i−2u)

E l snt
i+u v

×Yl+n−2i−2u v (ϕ,θ)
νl m,nr
∗abu (v2)

nanb
M lk

as (x)M nq
bt (x),

(4.55)

with

aln
i = 8

2l+n−i

√
2π17/2l !n!(l +n −2i )!

(l +1/2)!(n +1/2)!(l +n −2i +1/2)!
. (4.56)

We now focus on the gyroaverage of the collision operator in Eq. (4.55). We first note that

the gyroangle θ in c lkmnqr
ab is present only in the spherical harmonic Yl+n−2i−2u v (ϕ,θ) and the

fluid moments M lk
as and M

nq
bt as the latter are functions of x = R+ρ. To make the gyroangle

dependence explicit, we write both M l k
as and M

nq
bt in Fourier space as

M lk
as (x)M nq

bt (x) =
∫

dkdk′e i (k+k′)·RM l k
as (k)M nq

bt (k′)e i (k·ρa+k′·ρb ). (4.57)

Using the Jacobi-Anger expansion of Eq. (2.126), we find that

〈Ylm(ϕ,θ)M lk
as (x)M nq

bt (x)〉
R
=

∫
dkdk′e i (k+k′)·RM lk

as (k)M nq
bt (k′)i m

×
√

2l +1

4π

(l −m)!

(l +m)!
P m

l (cosϕ)Jm(k⊥ρa +k ′
⊥ρb). (4.58)

The gyroaveraged collision operator at arbitrary k⊥ρ is therefore given by

〈C (Fa ,Fb)〉R = faM

∞∑
l ,k,n,q=0

k∑
m=0

q∑
r=0

Ll
kmLn

qr 〈c l kmnqr
ab 〉

R
, (4.59)

with

〈c l kmnqr
ab 〉

R
=

min(2,l ,n)∑
u=0

min(l ,n)−u∑
i=0

d l−u,n−u
i aln

i+u

l∑
s=−l

n∑
t=−n

l+n−2i−2u∑
v=−(l+n−2i−2u)

E l snt
i+u v

×bl+nv
i+u P v

l+n−2i−2u(cosϕ)νl m,nr
∗abu (v2)

×
∫

Jv (k⊥ρa +k ′
⊥ρb)M lk

as (k)M nq
bt (k′)e i (k+k′)·Rdkdk′. (4.60)
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and

bl v
i = i v

√
2l −4i

4π

(l −2i − v)!

(l −2i + v)!
(4.61)

We note that, if only first order k⊥ρ terms are kept in the Fourier-Bessel operator of Eq. (4.51),

the collision operator in Eq. (4.59) reduces to the drift-kinetic collision operator found in

Chapter 2.

In Eq. (4.59), the gyroaveraged collision operator is cast in terms of v∥ and µ moments

of the guiding-center distribution function 〈Fa〉 for arbitrary values of k⊥ρ. We now apply

the transformation T of Eq. (3.7) to Eq. (4.59) in order to write the gyroaveraged collision

operator in terms of v∥ and µmoments of the gyrocenter distribution function 〈F a〉. As shown

in Section 4.1, only the zeroth order component in εδ of 〈C (Fa ,Fb)〉 is needed in order to

adequately describe collisional processes at first order in the gyrokinetic framework. Therefore,

using Eq. (3.7), we apply the zeroth order transformations Z ' Z and Fa(Z) = T Fa(Z) ' Fa(Z) to

the collision operator 〈C (Fa ,Fb)〉 in Eq. (4.59), yielding

〈C (Fa ,Fb)〉R ' faM

∞∑
l ,k,n,q=0

k∑
m=0

q∑
r=0

Ll
kmLn

qr 〈c l kmnqr
ab 〉

R
, (4.62)

with

〈c lkmnqr
ab 〉

R
=

min(2,l ,n)∑
u=0

min(l ,n)−u∑
i=0

d l−u,n−u
i aln

i+u

l∑
s=−l

n∑
t=−n

l+n−2i−2u∑
v=−(l+n−2i−2u)

E l snt
i+u v

×bl+nv
i+u P v

l+n−2i−2u(v∥/v)νlm,nr
∗abu (v2)

×
∫

Jv (k⊥ρa +k ′
⊥ρb)M

lk
as(k)M

nq
bt (k′)e i (k+k′)·Rdkdk′. (4.63)

where v2 = v2
∥+2Bµ/m and the gyrokinetic moments M

lk
am are given by

M
l k
am =

∫
jm[Fa]v l Ll+1/2

k (v2)Yl m
(
ϕ,0

) B∗
∥

m
d v∥dµ, (4.64)

with the Fourier-Bessel operator jm given by Eq. (4.51). The collision operator in Eq. (4.62)

represents the gyrokinetic full Coulomb collision operator up to O(ε2). In this expression,

the integro-differential character of the C ( fa , fb) operator is replaced by a two-dimensional

integral of the gyrocenter distribution function over velocity coordinates v∥ and µ [Eq. (4.64)].

4.4 Hermite-Laguerre Expansion of the Coulomb Operator

In this section, we expand the distribution function into an orthogonal Hermite-Laguerre

polynomial basis, Eq. (3.60), and compute the Hermite-Laguerre moments of the Coulomb col-

lision operator in Eq. (4.62). In order to express the collision operator in terms of the moments
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N
p j
a in Eq. (2.55) and evaluate its Hermite-Laguerre moments, we first consider the gyrokinetic

moments M
lk
am and write the integral in Eq. (4.64) as a function of the gyrocenter moments of

the form of Eq. (2.55). As a first step, we project both the Fourier-Bessel operator jm[Fa] and

the spherical harmonics Ylm on the Hermite-Laguerre basis. The µ and k⊥ dependence in the

Fourier-Bessel operator jm , Eq. (4.51), is decomposed using the identity between Bessel and

Legendre functions in Eq. (3.74). The Fourier-Bessel operator in Eq. (4.51), together with the

identity in Eq. (3.74) and the Hermite-Laguerre expansion of Eq. (2.50), can then be written as

jm[Fa] = fM a

∞∑
p=0

∞∑
j=0

∞∑
r=0

Hp (s∥a)L j (s2
⊥a)√

2p p !

Lm
r (s2

⊥a)sm
⊥a

(m + r )!

∫
N

p j
a (k)bm+2r

a e−b2
a e i k·xdk. (4.65)

As a second step, we rewrite the spherical harmonics Ylm(ϕ,0) using Eq. (4.42)

Ylm(ϕ,0) = (−1)m

√
2l +1

4π

(l −m)!

(l +m)!
P m

l (cosϕ). (4.66)

In order to expand the associated Legendre polynomials P m
l (cosϕ) in Eq. (4.66) in a Hermite-

Laguerre basis, we generalize the basis transformation in Eq. (2.81) as

v l

v l
tha

P m
l

(
v∥
v

)
Ll+1/2

k

(
v2

v2
tha

)
=

l+2k∑
p=0

k+bl/2c∑
j=0

T p j
l km Hp

(
v∥a

vtha

)
L j

(
µB

Ta

)(
µB

Ta

)m/2

, (4.67)

For the derivation of the T p j
lkm coefficients, see Appendix D. The inverse transformation coeffi-

cients
(
T −1

)lkm
p j are defined as

Hp

(
v∥a

vtha

)
L j

(
µB

Ta

)(
µB

Ta

)m/2

=
p+2 j∑
l=0

j+bp/2c∑
k=0

(
T −1)lkm

p j

v l

v l
tha

P m
l

(
v∥
v

)
Ll+1/2

k

(
v2

v2
tha

)
. (4.68)

The gyrocenter moments M
lk
am in Eq. (4.64) can be rewritten using the identities in Eqs. (4.65)

and (4.67) and

Lm
r (x)L j (x)xm =

m+r+ j∑
s=0

d m
r j sLs(x), (4.69)

with the d r
m j s coefficients given by

d r
m j s =

r∑
r1=0

j∑
j1=0

s∑
s1=0

L−1/2
r r1

Lm−1/2
j j1

L−1/2
ss1

(r1 + j1 + s1 +m)!, (4.70)

yielding the following expression

M
lk
am(k) =

∞∑
g=0

l+2k∑
h=0

k+bl/2c∑
u=0

m+r+u∑
s=0

M hus
lkmg N

hs
a (k)

(
k⊥ρtha

2

)2g+m

e−
k2
⊥ρ

2
tha

4 . (4.71)
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where we defined

M hus
l kmg = (−1)m

T hu
l kmd m

g us

√
2p p !

(m + g )!

√
2l +1

4π

(l −m)!

(l +m)!
. (4.72)

Using the form for M
lk
am in Eq. (4.71), the collision operator in Eq. (4.62) can be therefore

expressed in terms of Hermite-Laguerre moments N p j of the distribution function. We note

that in the drift-kinetic limit k⊥ρtha = 0, the moments M
l k
am in Eq. (4.71) reduce to the ones in

Chapter 2.

We now take Hermite-Laguerre moments of the collision operator 〈C (Fa ,Fb)〉, i.e., we

evaluate

C p j
ab (R) =

∫
〈C (Fa ,Fb)〉R

Hp (s∥a)L j (s⊥a2 )√
2p p !

B

ma
d v∥dµdθ, (4.73)

where we neglected higher order v∥b · (∇×b)/Ωa terms in B∗
∥ . Writing the gyroaveraged

collision operator 〈C (Fa ,Fb)〉 in Eq. (4.62) using Eqs. (4.63) and (4.71), and expanding the

Bessel function Jv (k⊥ρa + k ′
⊥ρb) = Jv [(k⊥ + k ′

⊥mb/ma qa/qb)ρtha s⊥a] using Eq. (3.74), the

following form for the 〈c lkmnqr
ab 〉

R
term appearing in 〈C (Fa ,Fb)〉R is obtained

〈c lkmnqr
ab 〉

R
=

∫ mi n(2,l ,n)∑
u=0

mi n(l ,n)−u∑
i=0

l+n−2i−2u∑
v=−l−n+2i+2u

∞∑
z=0

D lkmnqr
abui v z (k,k′)

×P v
l+n−2i−2u

(
v∥
v

)
sv
⊥aLv

z (s2
⊥a)νlm,nr

∗abu (v2)e i (k+k′)Rdkk′. (4.74)

In Eq. (4.74), we defined the D lkmnqr
abui v z term

D lkmnqr
abui v z (k,k′) =

l∑
s=−l

n∑
t=−n

E l snt
i+u v B 2z+v

ab e−B 2
ab

d l−u,n−u
i aln

i+u

(v + z)!
N

lkmnqr
abui v z (k,k′), (4.75)

where Bab = (k⊥+k ′
⊥mb/ma qa/qb)ρtha/2 and the convolution operator N

lkmnqr
abui v z (k,k′) is

given by

N
lkmnqr

abui v z (k,k′) = e i (k+k′)·Rbl+nv
i+u

∞∑
g1,g2=0

l+2k∑
h1=0

×
n+2q∑
h2=0

k+bl/2c∑
u1=0

m+g1+u1∑
s1=0

r+g2+u2∑
s2=r

M h1u1s1

lkmg M h2u2s2
mg t N

h1s1

a N
h2s2

b , (4.76)

with N
p j

the Hermite-Laguerre moments of the distribution function defined in Eq. (2.50).

Finally, using Eq. (4.62), the result in Eq. (4.74) is used in Eq. (4.73) in order to find the
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Hermite-Laguerre moments C p j
ab of the full Coulomb collision operator. This yields

C p j
ab =

∞∑
l ,k,n,q=0

k∑
m=0

q∑
r=0

Ll
kmLn

qr√
2p p !

C p j ,nqr
ab,l km , (4.77)

with

C p j ,nqr
ab,l km(k,k′) =

mi n(2,l ,n)∑
u=0

mi n(l ,n)−u∑
i=0

l+n−2i−2u∑
v=−l−n+2i+2u

∞∑
z=0

D l kmnqr
abui v z (k,k′)I , (4.78)

and

I =
∫

faM P v
l+n−2i−2u(v∥/v)νl m,nr

∗abu (v2)sv
⊥a Hp (s∥a)L j (s2

⊥a)Lv
z (s2

⊥a)
B∗
∥

ma
d v∥dµ. (4.79)

The integral factor I can be performed analytically by first rewriting the product of two

Laguerre polynomials as a single one using

Lm
r (x)L j (x) =

r+ j∑
s=0

d
m
r j sLs(x), (4.80)

with

d
r
m j s =

r∑
r1=0

j∑
j1=0

s∑
s1=0

L−1/2
r r1

Lm−1/2
j j1

L−1/2
ss1

(r1 + j1 + s1)!, (4.81)

expressing the resulting Hermite-Laguerre basis in terms of Legendre-Associated Laguerre

using Eq. (4.86), and writing the phase-space volume (B∗
∥ /m)d v∥dµ as v2d vdξ with ξ= v∥/v .

This yields

I =
z+ j∑
g=0

p+2g∑
s=0

g+bp/2c∑
t=0

d
v
z j g

(
T −1)st v

pg C st ,lm,nr
∗abu

(s + v)!

(s − v)!

δl+n−2i−2u,s

4π(s +1/2)
. (4.82)

For an analytically closed expression ready to be implemented numerically of the factor

C st ,l m,nr
∗abu = ∫

fM aν
lm,nr
∗abu (v2)Ls+1/2

t (v2)v sdv see Ji & Held (2009). We note that the long-wavelength

limit can be found by setting m1 = m2 = 0 and neglecting second order k⊥ρ effects in the

collision operator Eq. (4.78), which yields the Hermite-Laguerre moments of the collision

operator moments found in Chapter 2.

4.5 Small-Mass Ratio Approximation

In this section, we derive a simplified version of the electron-ion and ion-electron Coulomb

collision operators in the gyrokinetic regime by taking advantage of the small electron-to-ion

mass ratio me /mi . In (x,v) phase-space coordinates, the full coulomb collision operator in

Eq. (2.32) can be greatly simplified by taking advantage of the fact that, excluding the case

78



4.5. Small-Mass Ratio Approximation

Ti g Te , the ion thermal velocity is small in comparison with the electron thermal velocity. To

first order in me /mi , the electron-ion collision operator can be written as (Helander & Sigmar,

2005)

Cei ( fe ) =C 0
ei +C 1

ei , (4.83)

where C 0
ei and C 1

ei given by Eqs. (2.35) and (2.36), respectively. We expand f according to

Eq. (4.17) and write C 0
ei as

C 0
ei =− feM

∑
l ,k

ni Lei

v3
the c3

e

l (l +1)√
σl

k

Ll+1/2
k

(
c2

e

)
Yl (ce ) ·Mlk

e (x). (4.84)

We now Fourier transform the moments Mlk
e in Eq. (4.84) as Mlk

e (R) = ∫
Mlk

e (k)e i k·Rdk and

write the gyroaveraged collision operator C 0
ei as

〈C 0
ei 〉 =−

∫
dke i k·R feM

∑
l ,k

ni Lei

v3
the c3

e

l (l +1)√
σl

k

Ll+1/2
k

(
c2

e

)〈Yl (ce )e i k·ρe 〉 ·Mlk
e (k)ni . (4.85)

Using the Jacobi-Anger expansion of Eq. (2.126), Eq. (3.74), and the inverse basis transforma-

tion

Hp

(
v∥a

vtha

)
L j

(
µB

Ta

)(
µB

Ta

)m/2

=
p+2 j∑
l=0

j+bp/2c∑
k=0

(T −1)l km
p j

v l

v l
tha

P m
l

(
v∥
v

)
Ll+1/2

k

(
v2

v2
tha

)
, (4.86)

we obtain

〈Yl (v)e i k·ρe 〉 =
l∑

m=−l

∞∑
r=0

r∑
i=0

2i∑
s=0

i∑
t=0

√
π1/2l !

2l (l −1/2)!

(l −m)!

(l +m)!

i melm

(m + r )!

(m + r − i −1)!

(r − i )!(m −1)!

× (T −1)stm
0i b2r+m

e e−b2
e c l+s

e P m
l (cosϕ)P m

s (cosϕ)Ls+1/2
t (c2

e ), (4.87)

with be = k⊥ρthe /2. Equation (4.87) allows us to express the pitch-angle scattering operator

〈C 0
ei 〉 in Eq. (4.85) in a form suitable to project onto a Hermite-Laguerre basis, i.e., to calculate

C 0p j
ei moments of the form

C 0p j
ei =

∫
〈C 0

ei 〉
Hp

(
v∥

vtha

)
L j

(
µB
Ta

)
√

2p p !
d v∥dµdθ

B

ma
=

p+2 j∑
l=0

j+bp/2c∑
k=0

(T −1)lk0
p j v3

the√
2p p !

I 0lk
ei , (4.88)

where we define

I 0lk
ei =

∫
〈C 0

ei 〉c l
e Pl (cosϕ)Ll+1/2

k (c2
e )c2

e dce d cosϕ. (4.89)
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An analytical form for the integral factor I 0lk
ei can be derived using the expression for 〈C 0

ei 〉,
Eq. (4.85), and Eq. (4.87), yielding

I 0lk
ei (k) =−∑

u,v

ni Lei

v3
the

u(u +1)√
σu

v

ni Ml k
e (k) ·

u∑
m=−u

∞∑
r=0

r∑
i=0

2i∑
s=0

i∑
t=0

(T −1)stm
0i e−b2

e

×
√

π1/2u!

2u(u −1/2)!

(u −m)!

(u +m)!

i meum

(m + r )!

(m + r − i −1)!

(r − i )!(m −1)!
b2r+m

e I l us
Lkt I lus

Pm , (4.90)

where the integral I l us
Lkt is given by

I l us
Lkt =

k∑
m1=0

t∑
m2=0

Ll
km1

Ls
tm2

(m1 +m2 + (l +u + s)/2−1)!, (4.91)

and I l us
Pm can be calculated using Gaunt’s formula (Gaunt, 1929)

I l us
Pm =

∫ 1

−1
Pl (x)P m

u (x)P m
s (x)

d x

2

= (−1)
u+s−l

2 −m
(s +m)!(u + l − s)!

(
u+l+s

2

)
!(

l+s−u
2

)
!
(

u−l+s
2

)
!
(

u+l−s
2

)
!(u + l + s +1)!

×
min(l+s−u,u−m,s−m)∑

t=max(0,s−l−u)

(u +m + t )!(l + s −m − t )!

t !(u −m − t )!(l − s +m + t )!(s −m − t )!
. (4.92)

Finally, we compute the Hermite-Laguerre moments of the momentum-conserving term

C 1
ei in the collision operator Cei . By noticing that ui ·ce = u∥i c∥e+u⊥i c⊥e cosθ, 〈e i k·ρ〉 = J0(k⊥ρ),

and 〈e i k·ρ cosθ〉 = i J1(k⊥ρ), the gyroaveraged 〈C 1
ei 〉 operator can be written as

〈C 1
ei 〉 =

2ni Lei

v4
the c3

e

∫
dke i k·R fMe

[
u∥i (k)c∥e J0(k⊥ρi )+u⊥i c⊥e i J1(k⊥ρi )

]
. (4.93)

Projecting the operator 〈C 1
ei 〉 in Eq. (4.93) over a Hermite-Laguerre basis similarly to Eq. (4.88),

and using Eq. (4.86), we obtain

C 1p j
ei =

p+2 j∑
l=0

j+bp/2c∑
k=0

(T −1)l k0
p j v3

the√
2p p !

I 1lk
ei , (4.94)

where we define

I 1lk
ei =

∫
〈C 1

ei 〉c l
e Pl (cosϕ)Ll+1/2

k (c2
e )c2

e dce d cosϕ. (4.95)

Using the identity between Bessel and Legendre functions, Eq. (3.74), and the argument
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transformation formula between Legendre polynomials

Lr (s2
⊥i ) =

r∑
k=0

r !Lk (s2
⊥e )

k !(r −k)!

(τ−1)r−k

τr , (4.96)

where τ= Ti /Te , in Eq. (4.95), a formula for I 1l k
ei is found

I 1lk
ei = 2ni Lei

v4
the

∫
dke i k·R e−b2

i b2r
i

r !

[
r∑

u=0

r !(τ−1)r−uu∥i (k)

(r −u)!u!τr 2

1+2u∑
a=0

u∑
b=0

(
T −1)ab0

1u

+
r∑

d=0

d∑
u=0

i bi d !(τ−1)d−uu⊥i (k)

(d −u)!k !τd+1/2(r +1)
Msu

2u∑
a=0

u∑
b=0

(
T −1)ab0

0u

]
(k + l +1/2)!

k !(2l +1)
δbkδl a . (4.97)

where we defined the perpendicular phase-mixing operator Mk j = (2 j +1)δ j ,k −( j +1)δ j+1,k −
jδ j−1,k .

The ion-electron collision operator Ci e , to first order in me /mi , is given by Eq. (2.37). We

simplify Eq. (2.37) using Eq. (4.5), therefore approximating the distribution function fi by its

gyroaveraged component fi ' 〈F i 〉R, and retaining the lowest order collision operator in εδ.

The operator we obtain is therefore accurate up to second order in ε. This allows us to convert

the Ci e operator in Eq. (2.37) to gyrocenter variables Z using the chain rule at lowest order,

yielding

Ci e = Rei

mi ni vthi
·
[

c⊥
mi v2

thi

B

∂〈F i 〉R

∂µ
+b

∂〈Fi 〉R

∂s∥i

]
+νei

me

mi

ne

ni

[
3〈F i 〉R

+s∥i
∂〈F i 〉R

∂s∥i
+2µ

∂〈F i 〉R

∂µ
+ Te

2Ti

∂2 〈F i 〉R

∂s2
∥i

+ 2Te

B

∂

∂µ

(
µ
∂〈F i 〉R

∂µ

)]
. (4.98)

In order to take the gyroaverage of Eq. (4.98), we Fourier transform the friction force Rei

as Rei (R) = ∫
Rei (k)e i k·Rdk, and use the identity between Bessel functions and associated

Laguerre polynomials in Eq. (3.74), yielding

〈Ci e〉 =
∫

dk
Rei (k)e i k·R

mi ni
·
[

s⊥i e2i J1(k⊥ρi )
∂〈F i 〉R

∂s2
⊥i

+bJ0(k⊥ρi )
∂〈Fi 〉R

∂s∥i

]
+νei

me

mi

ne

ni

[
3〈F i 〉R

+s∥i
∂〈F i 〉R

∂s∥i
+2s2

⊥i

∂〈F i 〉R

∂s2
⊥i

+ Te

2Ti

∂2 〈F i 〉R

∂s2
∥i

+ 2Te

Ti

∂

∂s2
⊥i

(
s2
⊥i

∂〈F i 〉R

∂s2
⊥i

)]
. (4.99)

Finally, we take Hermite-Laguerre moments of the gyroaveraged ion-electron collision opera-

tor 〈Ci e〉 in Eq. (4.99), yielding

C p j
i e = νei

me

mi

∑
l k

B p j
l k N lk

i −
∫

dkRei (k)e i k·R ∞∑
r=0

b2r
i e−b2

i

r !mi ni
·
[

r+ j∑
s=0

d 0
r j s

√
2pN

p−1s
b

−e2

r∑
t=0

d+ j∑
s=0

iMtd

d 0
d j s

r +1

[
(s +1)N

ps − sN
ps−1

]]
, (4.100)
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with

B p j
lk = 2 jδl pδk j−1

(
1− Te

Ti

)
− (p +2 j )δl pδk j +

√
p(p −1)δl p−2δk j

(
Te

Ti
−1

)
. (4.101)

4.6 Conclusion

In this chapter, a formulation of the full-F gyrokinetic Coulomb collision operator is derived,

able to describe the plasma dynamics and turbulence at the tokamak periphery at arbitrary

collisionalities. This extends the previous full-F Coulomb collision operator derived in Chap-

ter 2 within the drift-kinetic limit to the gyrokinetic regime. The Coulomb collision operator

derived in the present chapter is expressed in a gyrocenter coordinate system, with parallel

and perpendicular velocity integrals of the gyroaveraged distribution function expressed in

terms of theµ and v∥ variables. The operator in Eqs. (4.62) to (4.64) is valid at all orders of k⊥ρs ,

for distribution functions arbitrarily far from equilibrium and for an arbitrary collisionality

regime. By expanding the gyroaveraged distribution function into an Hermite-Laguerre basis

and evaluating the resulting projection of the gyroaveraged collision operator on the same

basis, the collision operator we derive can be coupled to pseudospectral formulations of the

gyrokinetic equation, filling a gap in the literature by providing a full-F Coulomb collision oper-

ator for gyrofluid models. Ultimately, the results of the present chapter provide the theoretical

framework needed to perform qualitative and quantitative studies of turbulence, flows, and

the evolution of coupled background and fluctuating profiles in the periphery of magnetized

fusion devices.
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5 Linear Theory of Electron-Plasma
Waves at Arbitrary Collisionality

Electron-plasma waves (EPW), also called Langmuir waves or plasma oscillations, are oscil-

lations of the electron density at the plasma frequency resulting from the breaking of local

charge neutrality (Bohm & Gross, 1949; Malmberg & Wharton, 1966). The displacement of

electrons leads to an electrostatic force that, by pulling electrons back to their equilibrium

position, results in oscillations of the electrostatic potential and electron density. In a colli-

sionless system, the amplitude of EPW decreases with time due to Landau damping (Landau,

1946). The phenomenon of collisionless Landau damping is well understood, both linearly

and non-linearly (Dawson, 1961; O’Neil & Rostoker, 1965; Zakharov, 1972; Morales & O’Neil,

1972; Mouhot & Villani, 2011). When Coulomb collisions are present, although collisional and

Landau damping of EPW are known to act synergistically (Brantov et al., 2012), the physical

mechanisms which dictate their interplay are considerably less understood. This is despite

the fact that understanding the behavior of EPW with collisions is important since Coulomb

collisions significantly contribute to the behavior of many important laboratory plasmas, such

as magnetic (Scott, 2007) and inertial fusion (Lindl et al., 2004) plasmas, and plasmas for

industrial processing (Lieberman & Lichtenberg, 2005). Collisions also influence the dynamics

of EPW in near-earth space plasmas (Jordanova et al., 1996), and can even be the only source

of significant damping of EPW in low-temperature laboratory plasmas (Banks et al., 2017). We

note that, even if the limits considered to study EPW are typically different than the ones used

in Ch. 2, elements of the formalism developed therein, particularly for the collision operator,

can still be applied. In particular, as we show, the averaging operation we perform in Sec. 5.1.

is equivalent to the gyroaveraging operation performed in Ch. 2.

The need for a simplified theoretical framework able to describe Coulomb collisions at

arbitrary collisionality is widely recognized, and has been the subject of considerable interest

over the past few decades (Callen & Kissick, 1997; Ji & Held, 2010), with a large effort devoted

not only to the study of EPW (Hammett & Perkins, 1990; Brantov et al., 2012; Banks et al.,

2016), but also to ion-acoustic waves (Epperlein et al., 1992; Tracy et al., 1993; Zheng & Yu,

2000), and drift-waves (Jorge et al., 2018). As seen in Chapter 2, the difficulty associated with

an accurate estimate of the collisional damping in a plasma at arbitrary collisionalities is
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related to the integro-differential character of the Coulomb collision operator C ( f ) (Helander

& Sigmar, 2005). A possible approach to the study of the kinetic properties of EPW is based

on the development of the distribution function on a convenient basis, and the projection of

the kinetic equation on this basis. Indeed, pseudospectral decompositions that expand the

electron distribution function in an appropriate orthogonal polynomial basis have allowed

a rigorous assessment of the effect of collisional pitch-angle scattering in linear EPW and

ion-acoustic waves by including electron-ion collisions while neglecting electron-electron

collisions (justified in a high-Z regime) (Epperlein et al., 1992; Banks et al., 2016). The role of

self-collisions in the linear regime was investigated in Banks et al. (2017) using a simplified

operator with respect to the full Coulomb operator and in Brantov et al. (2012) where a

simplified form for the high order moments of the like-species Coulomb collision operator

was employed in order to derive an analytic dispersion relation.

In this chapter, the model developed in Chapter 2 is used to assess the linear properties

of EPW. The full linearized Coulomb electron-electron and electron-ion collision operators

is considered, without simplifying assumptions. For this purpose, we use a pseudospectral

decomposition of the electron distribution function based on a Hermite-Laguerre polynomial

basis, similar to the one introduced in Chapter 2. The framework used here allows, for the first

time, the evaluation of the frequency and damping rates and, more generally, of the linear

spectrum, of EPW eigenmodes, at arbitrary collisionalities. Among the subdominant modes,

we focus on the analytical and numerical description of the entropy mode, a purely damped

mode that requires the Coulomb collision operator to be properly described (Epperlein, 1994;

Banks et al., 2016). The entropy mode can have a damping rate comparable to other modes in

the plasma [such as ion-acoustic waves (Tracy et al., 1993)] and similar wave-numbers, and it

determines the damping rate of the system on collisional time scales. In fact, as we show, this

mode is absent when the kinetic equation is solved using approximate collision operators or

in one-dimensional velocity space descriptions and, in general, deviations between the results

based on the Coulomb and simplified collision operators (such as the Lenard-Bernstein,

the Dougherty, and the electron-ion operators) are particularly evident. We remark that

the discrepancies in the spectrum observed between different collision operators may lead

to major differences in the nonlinear evolution of EPW. Indeed, stable modes can be non-

linearly excited to a finite amplitude and have a major role in nonlinear energy dissipation

and turbulence saturation, affecting the formation of turbulent structures, as well as heat

and particle transport (Terry et al., 2006; Hatch et al., 2011a). As a test of our numerical

investigations, the results for the Lenard-Bernstein case are compared to the eigenmode

spectrum resulting from an analytical solution where the plasma distribution function and

the electrostatic potential are decoupled. This also allows us to gain some insight on previous

EPW results using the Lenard-Bernstein operator (Bratanov et al., 2013; Schekochihin et al.,

2016). In addition, we compare our pseudospectral decomposition to the one based on a

Legendre polynomial expansion for the case of the electron-ion operator.

This chapter is organized as follows. Section 5.1 presents the moment-hierarchy equation

used for the EPW description, deriving it from the kinetic Boltzmann equation by using
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a Hermite-Laguerre expansion of the electron distribution function. Section 5.2 focuses

on the collisionless moment-hierarchy and derives the collisionless dispersion relation. In

Section 5.3, the oscillation frequency and damping rates of EPW are analyzed and compared

with simplified collision operators. Section 5.4 derives a dispersion relation for the entropy

mode that shows remarkable agreement with the numerical results. Finally, Section 5.5 shows

the EPW eigenvalue spectrum using different collision operators and discretization methods.

The conclusions follow. We note that the results described in the present chapter have been

submitted to publication (?).

5.1 Moment-Hierarchy Formulation of Electron-Plasma Waves

We briefly describe the Boltzmann-Poisson system for an unmagnetized plasma, our starting

point for the description of EPW, and derive a moment expansion of the distribution function

that allows its numerical solution. The Boltzmann equation for the evolution of the electron

distribution function f is given by

∂ f

∂t
+v ·∇ f + e

m
∇φ · ∂ f

∂v
= Ĉ ( f ). (5.1)

In Eq. (5.1), e is the elementary charge, m the electron mass, φ the electrostatic potential, and

Ĉ ( f ) the non-linear Coulomb (also called Landau) collision operator of Eq. (2.32), which for

electrons is given by

Ĉ ( f ) =∑
b
νb∂v ·

[
m

mb
(∂vHb) f −∂v(∂vGb) ·∂v f

]
, (5.2)

with νb the characteristic collision frequency between electrons and species b (b = e, i for

electrons and ions, respectively). We relate the electrostatic potential φ to f using Poisson’s

equation

∇2φ= 4πe

(∫
f dv−n0

)
, (5.3)

where the ions are assumed to provide a fixed homogeneous, neutralizing background, with

density n0 and a Maxwellian-Boltzmann equilibrium with the same temperature as the elec-

trons. An atomic number Z = 1 is considered. Equation (5.1) is linearized by expressing f as

f = fM (1+δ f ) with δ f ¿ 1 and fM an isotropic Maxwell-Boltzmann equilibrium distribution

with constant density n0 and temperature T0, yielding

fM
∂δ f

∂t
+ fM v ·∇δ f + e

m
∇δφ · ∂ fM

∂v
=C ( fMδ f ), (5.4)

where we used the fact that Ĉ ( fM ) = 0, and C ( fMδ f ) is the linearized version of the Coulomb

collision operator in Eq. (5.2) whose expression can be found in Helander & Sigmar (2005).

The Boltzmann equation, Eq. (5.4), is coupled to the Poisson equation ∇2δφ = 4πeδn with
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δn = ∫
fMδ f dv the perturbed electron density. We now rewrite Eq. (5.4) in terms of the Fourier

transformed distribution function δ fk = ∫
δ f exp(−i k ·x)dx as

∂δ fk

∂t
+ i k ·vδ fk + i k ·v

4πe2δnk

k2T0
= C ( fMδ fk )

fM
, (5.5)

where we used the Fourier transformed Poisson equation −k2δφk = 4πeδnk , with δnk =∫
δn exp(−i k ·x)dx and δφk = ∫

δφexp(−i k ·x)dx.

Similarly to previous studies on the collisional damping of EPW (Brantov et al., 2012; Banks

et al., 2016), a three-dimensional cylindrical (v⊥,ϕ, vz ) velocity coordinate system is used,

therefore decomposing the velocity vector v as

v = vz ez + v⊥(cosϕex + sinϕey ), (5.6)

where (ex ,ey ,ez ) are Cartesian unit vectors with z the direction of the wave-vector k = kez . In

order to reduce the complexity and the computational cost of the numerical solution to that

of a two-dimensional velocity model, we apply the averaging operator 〈...〉 defined by

〈g 〉 (v⊥, vz ) = 1

2π

∫ 2π

0
g (v⊥,ϕ, vz )dϕ, (5.7)

to the Boltzmann equation, Eq. (5.4), yielding

∂〈δ fk〉
∂t

+ i kvz 〈δ fk〉+ i kvz
4πe2δnk

k2T0
= 〈C ( fMδ fk )〉 . (5.8)

Finally, we rewrite Eq. (5.8) by normalizing time to kvth with vth = p
2T0/m the electron

thermal velocity, δnk to n0, and vz to vth , yielding

i
∂〈δ fk〉
∂t

− vz 〈δ fk〉−
vzδnk

αD
= i

〈C ( fMδ fk )〉
fM

, (5.9)

where we define αD = k2λ2
D with λD =

√
T0/(4πe2n0) the Debye length, and where the col-

lision frequency coefficient present in C ( fMδ fk ) is now in units of kvth . As the linearized

Coulomb collision operator satisfies 〈C ( fMδ fk )〉 =C ( fM 〈δ fk〉), Eq. (5.8) can be used to obtain

the subset of azimuthally symmetric solutions in velocity space 〈δ fk〉, which are decoupled

from the azimuthally asymmetric solutions δ f̃ k = δ fk −〈δ fk〉.

Following Chapter 2, we solve the linearized kinetic equation, Eq. (5.9), at arbitrary colli-

sionalities by expanding the perturbed distribution function 〈δ fk〉 into an orthogonal Hermite-

Laguerre polynomial, similar to Eq. (2.50), that is

〈δ fk〉 =
∞∑

p, j=0

N p j√
2p p !

Hp (vz )L j
(
v2
⊥
)

. (5.10)

With respect non-linearized Hermite-Laguerre expansion considered in Chapter 2, we note
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that the expansion in Eq. (5.10) for the linearized distribution function considers an isotropic

background temperature T∥e = T⊥e = T0 and vanishing fluid velocity. Due to the orthogonality

of the Hermite-Laguerre basis, the coefficients N p j of the expansion in Eq. (5.10) can be

computed via the expression

N p j =
∫ Hp (vz )L j (v2

⊥)〈δ fk〉√
2p p !

e−v2
z−v2

⊥
p
π

d vz d v2
⊥. (5.11)

By projecting the Boltzmann equation, Eq. (5.9), onto a Hermite-Laguerre basis, a moment-

hierarchy for the coefficients N p j is obtained

i
∂

∂t
N p j =

√
p +1

2
N p+1 j +

√
p

2
N p−1 j + N 00

αD

δp,1δ j ,0p
2

+ iC p j , (5.12)

with C p j the projection of the linearized collision operator onto a Hermite-Laguerre basis

C p j =
∫ Hp (vz )L j (v2

⊥)〈C ( fMδ fk )〉√
2p p !

d vz d v2
⊥. (5.13)

In Chapter 2, the Coulomb collisional moments C p j were derived leveraging the non-linear

formulation of Ji & Held (2009), further expanded to the gyrokinetic regime in Chapter 3. While

a linearisation of the nonlinear moments C p j in Chapter 3 could be performed, in this chapter,

we restrict ourselves to the linear model of Ji & Held (2006), where the linearized collision

operator is projected onto a tensorial basis of the form Pl s = Pl (c)Ll+1/2
s (c2), simplifying the

numerical implementation of our model. Indeed, expanding the distribution function as

δ fa =∑
l ,s Ml s

a ·Pl s/σl
s , and with σl

s = l !(l + s +1/2)!/(2l (l +1/2)!s!), Ji and Held showed that the

linearized collision operator can be written as

C ( fMδ f ) = fM
∑
b

∞∑
l ,s=0

Pl (v̂)

σl
s

·
(
Ml s

e ν
l s,0
eb +Ml s

b ν
0,l s
eb

)
. (5.14)

where νl s,0
eb (v) and ν0,l s

eb (v) are linear combinations of the error function and its derivatives

[for their expression, see Ji & Held (2006)], and represent the test-particle and field-particle

(back-reaction) parts of the linearized collision operator, respectively. We remark that a similar

expansion in Legendre-Associated Laguerre polynomials was used in Brantov et al. (2012) in

order to derive a simplified dispersion relation applicable to the study of EPW, ion-acoustic

waves, and entropy modes.

In order to evaluate C p j , we Fourier transform in space and average the operator C ( fMδ f )

in Eq. (5.14) according to Eq. (5.7), using the averaging identity in Eq. (2.77), yielding

〈C ( fMδ fk )〉 =∑
b

∞∑
l ,s=0

(C l s,0
eb +C 0,l s

eb ), (5.15)
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where C l s,0
eb is the averaged test-particle operator

C l s,0
eb = fMν

l s,0
eb (v)Pl

( vz

v

)
M l s

e
2l (l !)2

(2l !)
, (5.16)

and C 0,l s
eb the field-particle (back-reaction) operator

C 0,l s
eb = fMν

0,l s
eb (v)Pl

( vz

v

)
M l s

b

2l (l !)2

(2l !)
, (5.17)

with the fluid moments M l s
b =N l s

b defined by Eq. (2.84). We note that, while an expansion in

tensorial Hermite polynomials Pl (c) allows us to conveniently express the linearized collision

operator in terms of M l s
b moments, the basis transformation of Eq. (2.81) is needed to cast the

velocity dependence of 〈C ( fMδ fk )〉 in a Hermite-Laguerre polynomial basis more appropriate

to model magnetized plasma dynamics, and to calculate its velocity moments.

We now use the expression of 〈C ( fMδ fk )〉 contained in Eq. (5.15) and inject it in Eq. (5.11).

By defining the fluid moments Al t s
eb as

Al t s
eb =

∫
v l Ll+1/2

t (v2) fMν
l s,0
b (v)d v, (5.18)

and B l t s
eb as

B l t s
eb =

∫
v l Ll+1/2

t (v2) fMν
0,l s
b (v)d v, (5.19)

the resulting collision operator moments C p j can be written as

C p j =∑
b

∞∑
s=0

p+2 j∑
l=0

j+bp/2c∑
t=0

(T −1)l t
p j 2l (l !)2

(2l )!σl
s
√

2p p !

νb

(2l +1)

(
M l s

e Al t s
eb +M l s

b B l t s
eb

)
. (5.20)

The analytical expressions for Al t s
eb and B l t s

eb suitable for numerical implementation are given in

Ji & Held (2006). The moments of the collision operator, C p j , correspond to the ones derived in

Jorge et al. (2018) and used in Chapter 6 for the study of drift-waves, and can also be obtained

by linearizing the electron collisional moments presented in Chapter 2.

Besides the Coulomb collision operator, the Hermite-Laguerre expansion described above

can be advantageously applied to describe other collision operators. We consider here the

Lenard-Bernstein (Lenard & Bernstein, 1958), the Dougherty (Dougherty, 1964), and the

electron-ion collision operators that are used for comparison with the full Coulomb one. The

Lenard-Bernstein and Dougherty operators are implemented in a number of advanced kinetic

codes (Nakata et al., 2016; Grandgirard et al., 2016; Pan et al., 2018), and are frequently used

to introduce collisional effects in weakly collisional plasmas (Zocco & Schekochihin, 2011;

Zocco et al., 2015; Shi et al., 2017; Mandell et al., 2018). Therefore, a comparison between the

Coulomb and the Lenard-Bernstein and Dougherty operators, even in simplified systems such
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as the case of EPW, is important to determine the accuracy and validity of these operators. The

Lenard-Bernstein collision operator CLB ( f ) is of the Fokker-Planck type. It conserves particle

number and satisfies the H-theorem, and it can be written as (Lenard & Bernstein, 1958)

CLB ( f ) = ν ∂

∂v
·
(

v f + v2
th

2

∂ f

∂v

)
. (5.21)

This operator can be derived from the Fokker-Planck equation, Eq. (5.2), by assuming (m/mb)∂vHb =
v and ∂v∂vGb =−Iv2

th/2 with I the identity matrix. By projecting the Lenard-Bernstein operator

onto a Hermite-Laguerre basis according to Eq. (5.13), one obtains

C p j
LB =−ν(p +2 j )N p j . (5.22)

In Eq. (5.22), we have defined the normalized frequency ν as the electron-ion collision fre-

quency normalized to kvth , namely ν= νi /(kvth). Equation (5.22) can then be used in the

moment-hierarchy equation Eq. (5.12), yielding

i
∂

∂t
N p j =

√
p +1

2
N p+1 j +

√
p

2
N p−1 j + N 00

αD

δp,1δ j ,0p
2

− iν(p +2 j )N p j . (5.23)

The linearized Dougherty collision operator CD ( f ), on the other hand, adds the necessary

field-particle collisional terms to the Lenard-Bernstein operator in order to provide mo-

mentum and energy conservation properties. Namely, it sets (m/mb)∂vHb = v − u, with

u = ∫
v f d vz d v2

⊥dϕ/n0, and ∂v∂vGb = −IT /ma with T = ∫
m(v − u)2 f d vz d v2

⊥dϕ/(3n0) =
(
p

2N 20 − 2N 01)/3. The Hermite-Laguerre moments of the linearized Dougherty collision

operator C p j
D are given by

C p j
D =−ν

[
(p +2 j )N p j −N 10δp1δ j 0 +T (

p
2δp0δ j 1 −2δp2δ j 0)

]
, (5.24)

yielding the moment-hierarchy equation

i
∂

∂t
N p j =

√
p +1

2
N p+1 j +

√
p

2
N p−1 j + N 00

αD

δp,1δ j ,0p
2

− iν
[

(p +2 j )N p j −N 10δp1δ j 0 +T (
p

2δp0δ j 1 −2δp2δ j 0)
]

. (5.25)

We note that the moment-hierarchies with the Lenard-Bernstein or the Dougherty collision

operator, Eq. (5.23) and Eq. (5.25), respectively, do not couple different Laguerre moments and,

therefore, one can focus on obtaining the coefficients N p0 for solving the moment-hierarchy.

The Hermite-Laguerre expansion procedure can also be applied to the electron-ion opera-

tor Cei ( f ) that is often used for EPW studies (Epperlein et al., 1992; Banks et al., 2016), that is

Cei ( f ) = ν

2v3

∂

∂ξ

[(
1−ξ2) ∂ f

∂ξ

]
, (5.26)
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with ξ= vz /v . This operator describes the pitch-angle scattering of electrons due to collisions

with ions. By projecting Eq. (5.26) into a Hermite-Laguerre basis, Eq. (2.93) is obtained.

As an aside, we note that previous studies on EPW have shown that the solutions of the

linearized Boltzmann equation are, in fact, sensitive to the discretization method used. For

example, it was shown that finite-difference methods, when applied to the problem of EPW,

produce a number of numerical, non-physical modes with a rather small damping rate that

do not lie in the vicinity of the collisionless solutions, even for weak collisionalities and a very

high resolution (Bratanov et al., 2013). On the other hand, a discretization scheme based

on a Hermite-Laguerre polynomial decomposition yields a large number of roots that lie in

the vicinity of the collisionless solution. Since previous EPW studies using the electron-ion

collision operator have been performed using a discretization of the distribution function into

a set of Legendre polynomials, i.e., (Epperlein et al., 1992; Brantov et al., 2012; Banks et al.,

2016)

〈δ fk〉 =
∞∑

l=0
al (v)Pl (ξ), (5.27)

as a test of our approach, we compare in Section 5.5 our results with the Legendre decom-

position in Eq. (5.27). By projecting the Boltzmann equation, Eq. (5.9), with an electron-ion

collision operator into a Legendre basis, Eq. (5.27), the following moment-hierarchy equation

is obtained

i

v

d al (v)

d t
= l

2l −1
al−1(v)+ l +1

2l +3
al+1(v)+ δl ,1

αD

∫
fM v2a0(v)d v − iν

v4 l (l +1)al . (5.28)

A relation between the Hermite-Laguerre N p j and Legendre moments al can be found by

comparing Eqs. (5.10) and (5.27), yielding

al (v) =
∞∑

p=0

∞∑
j=0

p+2 j∑
s=0

j+bp/2c∑
t=0

(T −1)st
p j

N p j√
2p p !

v sLs+1/2
t (v2)δl s , (5.29)

and

N p j =
p+2 j∑
s=0

j+bp/2c∑
t=0

(T −1)st
p j√

2p p !(2l +1)

∫
as(v)v s+2Ls+1/2

t (v2)d v. (5.30)

5.2 Collisionless Dispersion Relation

As a first step in the analysis of EPW, and for comparison with the results in the presence of

collisions, we derive the EPW dispersion relation in the collisionless limit. We first Fourier

transform in time the collisionless limit of the moment-hierarchy equation, Eq. (5.12), by
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imposing δ fk ∼ e(γ+iω)t , obtaining

i (γ+ iω)N p j =
√

p +1

2
N p+1 j +

√
p

2
N p−1 j + N 00

αD

δp,1δ j ,0p
2

. (5.31)

A closed form solution of the collisionless moment-hierarchy in Eq. (5.31) can be obtained by

dividing the Boltzmann equation, Eq. (5.9), by the resonant iγ− vz factor, multiplying the ob-

tained equation by the Hermite-Laguerre polynomial basis functions and, finally, integrating

over velocity space. This yields

N p j =−N 00

αD

[
−i (γ+ iω)

(−1)p√
2p p !

Z (p) (ω− iγ
)+δp,0

]
δ j ,0, (5.32)

where Z (p) is the pth derivative of the plasma dispersion function Z (0), defined by

Z (p)(u) = (−1)p

p
π

∫ ∞

−∞
Hp (x)e−x2

x −u
d x. (5.33)

We note that the solution in Eq. (5.32) is similar to the one in Kanekar et al. (2015) when applied

to the EPW case. By setting (p, j ) = (0,0) in Eq. (5.32), the collisionless dispersion relation is

found

D = 1+αD − i (γ+ iω)Z (ω− iγ) = 0. (5.34)

Alternatively, Eq. (5.34) can be derived from the collisionless limit of the Boltzmann equation,

Eq. (5.9), upon division by the factor iγ−ω− vz and integration with respect to vz .

The numerical solution of Eq. (5.34) is shown in Fig. 5.1. This is obtained by discretizing γ

andω into a two-dimensional [ω,γ] grid, evaluating D on the grid, and storing the values where

[Re(D), Im(D)] vanishes. To evaluate Z , we make use of the identity Z (x) = i
p
πe−x2

erfc(−i x)

with erfc(x) = 1− erf(x) and erf(x) the error function, and use the algorithm developed in

Gautschi (1970) to numerically compute erf(x) for complex arguments.

The αD dependence of the least damped solution of Eq. (5.34) is shown in Fig. 5.2, where

both its damping rate γ and frequency ω are seen to be monotonic functions of αD , which

is in agreement with previous EPW studies (Banks et al., 2017). In the following, without

loss of generality and similarly to previous studies of collisional damping of EPW (Banks

et al., 2016, 2017), we select the value of αD = 0.09 when fixed αD studies are performed,

which corresponds to kλD =p
αD = 0.3. While this value of αD is typical for EPW driven by

stimulated Raman scattering (Brunner & Valeo, 2004; Winjum et al., 2013), we add that the

particular choice of αD has no quantitative impact on the conclusions we draw.

91



Chapter 5. Linear Theory of Electron-Plasma Waves at Arbitrary Collisionality

Figure 5.1: Spectrum of solutions of the collisionless dispersion relation D = 0, Eq. (5.34), for
αD = 0.09. The blue dots show the roots of the real part of D , i.e., Re[D(ω+ iγ)] = 0, the black
circles the roots of the imaginary part of D, i.e., Im[D(ω+ iγ)] = 0, and the red squares the
intersection of the two sets of roots. The damping rate γ and frequency ω are shown in the
vertical and horizontal axis, respectively.

Figure 5.2: Collisionless frequency (blue line) and damping rate (red line) of the least damped
solution of the collisionless dispersion relation, Eq. (5.34), as a function of αD , for 0.05 <αD <
0.4.
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Figure 5.3: Time evolution of the absolute value of N 00 using a truncation with (P, J ) = (18,2),
evaluated using the full linearized Coulomb collision operator. Different values of ν and αD

are shown.

5.3 Temporal Evolution of Electron-Plasma Waves

In this section, the moment-hierarchy equation, Eq. (5.12), is solved numerically as a time-

evolution problem. For the numerical solution, the moment-hierarchy is truncated at a

maximum Hermite-Laguerre index (P, J ) by setting

N p j = 0, for (p, j ) > (P, J ). (5.35)

We consider as initial condition N p j (t = 0) = δp0δ j 0, such that the perturbed density and

electrostatic potential are initially excited, while higher moments of the distribution function

are set to zero. The temporal evolution of N 00 (and therefore of φ) is shown in Fig. 5.3 for

different collisionalities and αD values. In this section, we focus on the oscillating initial

phase of Fig. 5.3, where the EPW dominate the dynamics. We fit the amplitude of N 00 to an

exponentially damped sinusoidal wave with real frequency ω and damping rate γ, taking into

account a minimum of three oscillation periods. The later phase, where a purely damped

behavior is observed at higher collisionalities due to the presence of an entropy mode, is

investigated in Section 5.4.

A convergence study with the truncation indices (P, J ) is shown in Fig. 5.4. Convergence is

observed for (P, J) = (18,2) in the range of collisionalities and αD investigated (a variation of

less than 3% is observed between damping rates evaluated with a truncation at (P, J ) = (18,2)

and a truncation at higher values of P and J ).

The values of oscillation frequency ω(αD ,ν) and damping rate γ(αD ,ν) obtained as a fit

of the initial damping phase are shown in Fig. 5.5 for 0.075 < αD < 0.2 and 0.015 < ν < 0.7

using the Coulomb collision operator, where a truncation at (P, J ) = (18,2) is used. The largest

deviation of the damping rate from the collisionless case is seen to occur for large values of

collisionality and small αD . This is expected, as for large γ and small αD the collisional fluid

limit is retrieved. The dependence on αD may be attributed to the decreasing magnitude of
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Figure 5.4: Comparison of the normalized damping rate γ for αD = 0.09 as a function of the
normalized collision frequency considering a truncation at different values of (P, J) (solid
lines) and using the full linearized Coulomb collision operator. The collisionless least damped
Landau solution is shown for comparison (dashed blue line). All frequencies are normalized
to kvth .

Figure 5.5: Damping rate γ (left) and oscillation frequency ω (right) of the electron-plasma
wave obtained from the moment-hierarchy equation, Eq. (5.12), as a function of αD and ν for
(P, J ) = (18,2). The full linearized Coulomb collision operator is considered.

the Landau damping rate for decreasing αD (see Fig. 5.2). This makes the ratio between the

collisional and the collisionless damping rates increasingly larger. Finally, we remark that the

presence of several competing eigenmodes in the initial transients of the temporal evolution

of N 00 contribute to the presence of a transition at αD ∼ 0.1 visible in Fig. 5.5.

A comparison of the collisional component of the damping rate γcol l , obtained with

different collision models, is shown in Fig. 5.6, where γcol l = γ−γcol l i si onless with γ the total

damping rate and γcol l i si onless the collisionless Landau damping. Results considering Lenard-

Bernstein, Dougherty, electron-ion, and the full Coulomb collision operators are shown. We

note that when the Lenard-Bernstein and the Dougherty operator are considered, only self-

collisions are taken into account, and with the electron-ion operator only unlike-particle

collisions are included. In general, the Coulomb operator yields a damping rate smaller than
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Figure 5.6: Difference between the collisionless damping rate γwith the one resulting from the
moment-hierarchy equation, Eq. (5.12), with the full Coulomb, Lenard-Bernstein, Dougherty,
and electron-ion collision operators at αD = 0.09 and (P, J ) = (18,2). The collisional damping
rate γ f lui d =−0.266ν obtained from a fluid description is also shown for comparison.

the Lenard-Bernstein and larger than the Dougherty one, with deviations of up to 50% between

different operators. The use of an electron-ion collision operator is preferable since it yields

damping rates and frequencies similar, just slightly lower, than the Coulomb operator. The

collisional damping rate, γ f lui d = −0.532ν/2, obtained from a fluid description using the

Braginskii equations (Banks et al., 2017), is also shown for comparison. We remark that the

results in Fig. 5.6 for the collisional component of the damping rate of the fluid, purely e-i

collisions, and the full Coulomb operator are in close agreement with the findings of Banks

et al. (2017).

For ν¿ 1, it is seen that the damping rates of all solutions approach the collisionless limit

regardless of the collision operator used. When ν is increased, Fig. 5.6 shows that the differ-

ences between the collision operators still persist. This allows us to draw arguments for the

difference between the different collision operators by using a low number of moments. The

lowest order particle conservation C 00 = 0 and collisional friction C 10 =−νN 10 moments C p j

are the same between the Coulomb, Lenard-Bernstein, and electron-ion collision operators,

while the Dougherty operator has C 10
D = 0. This effectively reduces the damping rate evaluated

with the Dougherty operator with respect to the Coulomb case, as seen in Fig. 5.6.

On the other hand, only the Coulomb, the Dougherty, and the electron-ion collision

operators are energy conserving, i.e., satisfying (1/2)
∫

m(v2
z +v2

⊥)C ( f )dv = 0 or, equivalently,

C 20 = p
2C 01, while the Lenard-Bernstein operator does not conserve energy. In fact, the

energy moments are given by C 01
LB =−ν2N 01 and C 20

LB =−ν2N 20, yielding C 01
LB =C 20

LB . However,

despite the additional conservation properties, the agreement of the Dougherty operator

is rather poor, as seen in Fig. 5.6. We conclude therefore that the presence of additional

momentum and energy conserving terms in the Dougherty operator with respect to the

Lenard-Bernstein operator does not yield a damping rate closer to the Coulomb one. This

was also pointed out in Jorge et al. (2018), where a similar framework was used to derive the
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Figure 5.7: Time evolution of the absolute value of N 00 with ν = 5 and αD = 0.01. Left:
convergence study with a full Coulomb operator and (P, J ) = (18,0) (green), (P, J ) = (18,2) (red),
and (P, J) = (18,4) (blue). The time evolution of N 00 with ν = 3.5 and (P, J) = (18,4) is also
shown for comparison (black). Right: truncation at (P, J) = (18,2) using the full Coulomb
collision operator (red), electron-ion collisions only (green), the Lenard-Bernstein (orange)
and the Dougherty (blue) collision operators.

growth rate of the drift-wave instability.

5.4 Entropy Mode

We focus on the latter stage of the time evolution of N 00 shown in Figs. 5.3 and 5.7, where

a purely damped behavior is found at high collisionalities. In order to enhance the role of

the zero-frequency mode, we consider the collision frequency ν = 5, while decreasing the

role of Landau damping by setting αD = 0.01 (the purely damped mode is not affected by

the value of αD , if αD ¿ 1). Indeed, the transition to a purely damped behaviour is seen to

occur at times that decrease with the collision frequency [see Fig. 5.7 (black)]. The resulting

time traces of |N 00| using a full Coulomb collision operator are shown in Fig. 5.7 (left) for

(P, J) = (18,0), (P, J) = (18,2), and (P, J) = (18,4), while time traces using the full Coulomb,

electron-ion, Lenard-Bernstein and the Dougherty collision operators with (P, J ) = (18,2) are

shown in Fig. 5.7 (right). We observe that for the Coulomb and electron-ion case, there is

a transition to a purely damped mode at t ' 7 only when perpendicular velocity dynamics

is introduced, J ≥ 2. At the same time, while for the Coulomb operator, the purely damped

mode that sets the late time evolution of the system in Fig. 5.7 has a damping rate γ'−0.202,

the electron-ion collision operator yields a damping rate one order of magnitude smaller,

γ ' −0.024. This purely damped decay is not present when the Lenard-Bernstein or the

Dougherty operators are considered. We therefore conclude that in order to obtain the correct

long-term behaviour of the Boltzmann equation, Coulomb self-collisions must be included in

the description.

The long term behaviour observed in Fig. 5.7 is due to the presence of the entropy mode
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(Banks et al., 2016). An analytical framework to model the entropy mode can be derived by

noting that this is a purely damped mode with a damping rate much smaller than both the

plasma and the collision frequencies. Previous studies on the collisional damping of EPW

show that such a mode results from the effect of pitch-angle scattering at high collisionality

(Banks et al., 2016). Considering that in the high collisionality limit only the lowest order

terms in the expansion of 〈δ fk〉 in Eq. (5.10) play a role and that, according to Fig. 5.7, a

finite perpendicular velocity-space resolution is an essential element for the entropy mode,

we consider in the moment-hierarchy equation, Eq. (5.12), the six lowest order Hermite-

Laguerre expansion coefficients, namely N 00, N 10, N 20, N 30, N 01 and N 11 with the ordering

N 30 ∼ N 11 ∼ εN 20 ∼ εN 01 ∼ εφ, with ε the small expansion parameter

ε∼ 1

ν
∼ γ, (5.36)

so that the particle mean-free pathλm f p = vth/νei is small compared with typical wavelengths

of the perturbed quantities, i.e., kλm f p ¿ 1. Higher order moments are considered to be

O(ε2φ). Charge neutrality is kept up to second order, i.e.,

αD ∼ ε2. (5.37)

Using Poisson’s equation, we find that density perturbations N 00 are negligible when compared

with electrostatic fluctuations, namely

N 00

φ
=−αD ¿ 1. (5.38)

The moment-hierarchy equation, Eq. (5.12), at (p, j ) = (0,0), shows that N 10/N 00 ∼ γ. Together

with the estimate in Eq. (5.38), this yields

N 10

φ
∼ γαD ¿ 1 (5.39)

Using the moment-hierarchy equation Eq. (5.12) and neglecting second order terms in the

parallel (p, j ) = (2,0) and perpendicular (p, j ) = (0,1) temperature equations, we find that

iγN 20 '
√

3

2
N 30 − iν(0.45N 01 +0.64N 20), (5.40)

and

iγN 01 ' N 11

p
2
− iν(0.32N 01 +0.45N 20), (5.41)

respectively. The same procedure in the (p, j ) = (3,0) and (p, j ) = (1,1) moment equations

yields

0 '
√

3

2
N 20 − iν(0.15N 11 +1.03N 30), (5.42)

97



Chapter 5. Linear Theory of Electron-Plasma Waves at Arbitrary Collisionality

and

0 ' N 01

p
2
− iν(1.09N 11 +0.15N 30), (5.43)

respectively.

As a consequence, the truncated moment-hierarchy equations, Eqs. (5.40)-(5.43), yield

the following dispersion relation

γ2 +1.96γ

(
1

ν
+0.49ν

)
+ 0.69

ν2 +1.4×10−5ν2 +0.88 ' 0 (5.44)

that up to second order in ε yields the solutions γ'−0.96ν−1.04/ν and γ'−0.92/ν. The least

damped solution,which is the one consistent with the ordering γ∼ 1/ν in Eq. (5.36), when

applied to the ν= 5 case of Fig. 5.7, leads to γ'−0.18, which has a relative difference of 11%

with respect to the γ=−0.202 value obtained numerically.

We note that, with the same ordering above, a purely damped solution can also be obtained

from the one-dimensional linearized Braginskii equations (Braginskii, 1965). In this limit, in

fact, the following linearized electron temperature equation is found

n0
3

2

∂Te

∂t
+∇z

(
−χe

∥∇z Te

)
' 0 (5.45)

where χe
∥ = 3.2n0Te /(meνkvth), with the Joule heating term proportional to me /mi neglected.

Equation (5.45) yields the electron Braginskii entropy mode γ'−1.1/ν, a value that is close to

the estimate above based on the truncated moment-hierarchy equation.

Finally, we remark that a purely damped mode is only observed in the temporal evolution

of N 00 for values of ν& 1, while for ν. 1 a transition from damped oscillations to a purely

damped behaviour is not seen to occur for the range of values of αD considered here even at

later times. The value of ν where a transition from collisional Landau damping to a purely

damped entropy mode occurs after an initial transient is visible in the time evolution of N 00

can be estimated by balancing the damping rate of the collisional damping of EPW with the

damping rate of entropy modes. Estimating the former as γ'−0.03−0.26ν from Fig. 5.6, and

the latter as γ'−0.92/ν, the collision frequency at which the transition occurs is therefore

estimated to be ν' 1.8, in agreement with the numerical results.

5.5 Eigenvalue Spectrum

We now compute the eigenmode spectra of EPW, and highlight the differences between the

spectra of the full Coulomb, electron-ion, and Lenard-Bernstein operators using a Hermite-

Laguerre decomposition, and the electron-ion operator using a Legendre polynomial decom-

position. We note that both the Lenard-Bernstein and the Dougherty collision operators are

seen to yield similar eigenmode spectra. Therefore, we do not consider the Dougherty operator
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for this analysis. To compute the Hermite-Laguerre EPW eigenmode spectrum, the moment-

hierarchy equation, Eq. (5.12), is truncated at a maximum index (P, J), Fourier transformed

in time, and the resulting eigenvalue problem solved numerically, yielding the Van-Kampen

spectrum of solutions at arbitrary collisionality. In matrix form, this yields

AN = (ω+ iγ)N , (5.46)

where N = [N 00N 01... N 0J N 10N 11...N p j ] is the moment vector and A the (P +1)(J +1)× (P +
1)(J +1) matrix of moment-hierarchy coefficients of elements Am

n with m and n the row and

column, respectively

Ap J+ j
p ′ J+ j ′ =

√
p +1

2
δp+1,p ′δ j , j ′ +

√
p

2
δp−1,p ′δ j , j ′ +

δp,1δ j ,0p
2

δp ′,0δ j ′,0

αD
+ iC p J+ j

p ′ J+ j ′ , (5.47)

which can be written in matrix form as

A =



0 0 . . . 1/
p

2 0 . . .

0 iC 01
01 . . . iC 01

10 1/
p

2+ iC 01
11 . . .

...
... . . .

...
... . . .

(1+1/αD )/
p

2 iC 10
01 . . . iC 10

10 iC 10
11 . . .

0 1
p

2+C 11
01 . . . iC 11

10 iC 11
11 . . .

...
... . . .

...
... . . .


. (5.48)

In Eqs. (5.47) and (5.48), we have defined the collisional coefficients C p j
st in terms of the

collisional moments C p j as C p j =∑
p ′, j ′ C

p j
p ′ j ′N

p ′ j ′ and C p J+ j
p ′ J+ j ′ =C p j

p ′ j ′ . The spectrum of γ and

ω is then found by computing the eigenvalues of the matrix A.

The resulting eigenvalue spectrum for the Coulomb collision case is shown in Fig. 5.8 for

ν= 0.1 (a) and ν= 1 (b), with αD = 0.09 and (P, J) = (18,2), together with the corresponding

collisionless Landau root (red marker), i.e., the least damped solution of Eq. (5.34). The

resulting collisional spectrum is discrete, contrary to the continuous collisionless Van-Kampen

spectrum, as noted in previous studies of weakly collisional plasma systems (Ng et al., 1999;

Bratanov et al., 2013). Figure 5.8 shows that the damping rate of the Coulomb eigenmodes

decreases with the corresponding frequency, which is possibly related to the fact that the

collisional drag force decreases with the particle velocity in the Coulomb collision operator.

We also note that the least damped Coulomb eigenvalue in Fig. 5.8 is not the one closest to the

Landau collisionless solution, as there are modes with higher oscillation frequency ω that are

less damped than the collisionless damping rate. These eigenvalue solutions, however, are

related to eigenvectors that mainly involve moments N p j with large values of p and j , and

have therefore a negligible contribution to the initial damping of N 00 and φ.

Finally, the Coulomb eigenmode spectrum in Fig. 5.8 includes modes with vanishing

frequency and damping that increases with ν. These modes correspond therefore to purely

damped modes with a damping rate that at low collisionalities can be comparable to the
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collisionless Landau one. These zero-frequency solutions have also been previously observed

in the analysis of linear EPW when pitch-angle scattering effects are included (Epperlein et al.,

1992; Banks et al., 2016), and correspond to the entropy mode studied in Section 5.4.

As an aside, we note that when the moment-hierarchy equation, Eq. (5.12), is truncated at a

higher P , i.e., using a higher number of Hermite polynomials, the number of eigenmodes with

high frequency and small damping rate increases. On the other hand, when the number of

Laguerre polynomials, hence J , is increased, the eigenmode spectrum present and increasing

number of modes with similar frequencies but increasingly higher damping rates. However,

as shown by Fig. 5.4, the damping rates γ closest to the collisionless solution have negligible

variation when P and J are increased (for P ≥ 18 and J ≥ 0 the variation is smaller than 3%).

The eigenmode spectra using a Lenard-Bernstein collision operator are also shown in

Fig. 5.8 for ν= 0.1 (c) and ν= 1 (d), with αD = 0.09 and (P, J ) = (18,2). A clear difference is seen

between the eigenmode spectra of the Coulomb and Lenard-Bernstein operators. Contrary

to the Coulomb case, the damping rate of the EPW modes increases with the frequency ω

when a Lenard-Bernstein collision operator is used. Also, contrary to the Coulomb case, the

Lenard-Bernstein root closest to the Landau collisionless root is the least damped one, as also

noted in previous weakly-collisional studies of EPW (Bratanov et al., 2013).

Finally, the eigenvalue spectrum using the electron-ion Coulomb operator introduced in

Eq. (5.26) is shown in Fig. 5.8 for ν= 0.1 (e) and ν= 1 (f). The spectrum is qualitatively similar

to the Coulomb one, with high frequency modes being less damped than modes with smaller

oscillation frequency. As for the Coulomb collision operator, such frequency dependence may

be due to the dependence of the drag force on the particle velocity. Indeed, the electron-ion

collision operator contains a drag force that decreases with the particle velocity, similarly to

the Coulomb operator.

We now estimate the frequency ω of the modes in Fig. 5.8 with a damping rate γ different

than the ones closest to the collisionless roots, by noting that the values ofω in Fig. 5.8 are seen

to be weakly dependent on ν,αD , and the collision operator for the range of values used. We

therefore solve the moment-hierarchy equation, Eq. (5.12), in the φ= 0 limit, which effectively

neglects the roots related to EPW. Furthermore, in order to retrieve purely oscillatory solutions,

the collisional damping terms C p j in Eq. (5.12) are neglected. The time Fourier-transformed

moment-hierarchy equation in the φ=C p j = 0 limit reads

ωN p j =
√

p +1

2
N p+1 j +

√
p

2
N p−1 j . (5.49)

We recognize in Eq. (5.49) the recursion relation for the Hermite polynomials

N p j = Hp (ω)√
2p p !

. (5.50)
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Figure 5.8: Complete eigenvalue spectrum of the truncated moment-hierarchy equation
with αD = 0.09 and (P, J) = (18,2) [yielding (P + 1)(J + 1) = 57 eigenvalues], using the full
Coulomb collision operator (top), the Lenard-Bernstein operator (middle), and the electron-
ion Coulomb operator only (bottom), with ν = 0.1 (left) and ν = 1 (right). The collisionless
least damped solution is shown as a red marker, and the red vertical lines are the solutions of
Eq. (5.51).
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The roots ω can be found by applying the truncation condition in Eq. (5.35) to the solution

in Eq. (5.50), yielding

HP+1(ω) = 0. (5.51)

The solutions ω in Eq. (5.51) are purely real, yielding frequencies that closely follow the ones

observed in the eigenvalue spectra (red vertical lines in Fig. 5.8).

Finally, we present two tests to assess the validity of the results in Fig. 5.8, first for the

Lenard-Bernstein case and then for the electron-ion case. Focusing on the Lenard-Bernstein

spectrum, we derive a polynomial in γ whose roots closely follow the modes in Fig. 5.8 (c) and

(d) that appear with damping rates larger than the ones of the two least damped roots. Fourier

transforming the Boltzmann equation, Eq. (5.9), in time and in velocity-space similarly to

Ng et al. (2004), with C ( f ) the Lenard-Bernstein collision operator, the following differential

equation for g (s) = ∫ ∞
−∞ exp(i svz −γt + iωt ) fMδ fk d vz d t is obtained

g (s)
(
γ+ iω+ ν

2
s2

)
+ (1+νs)

d g (s)

d s
=−s

p
π

2αD
e−

s2

4 g (0). (5.52)

We solve Eq. (5.52) neglecting the coupling with the electrostatic potential φ by setting

(αD )−1 ¿ 1 (or, equivalently, setting φ= 0 in the Boltzmann equation), and define λ= ν−2/2

and Γ=p
2λ(γ+ iω)−λ, yielding

g (s) = g (0)
(
1+ s

2λ

)Γ
e−

s2

4 +sλ. (5.53)

Similarly, Fourier transforming the Hermite-Laguerre expansion of 〈δ fk〉 in velocity-space, we

obtain

g (s) =
∞∑

p=0

i p N p0√
2p+1p !

sp e−
s2

4 . (5.54)

Equating the two expressions above, we find

N p0 = N 00(−i )p

√
2p+1

p !

d p

d sp

[
e sλ

(
1+ s

2λ

)Γ]
s=0

. (5.55)

Therefore, the truncation condition in Eq. (5.35) in the φ= 0 limit is equivalent to imposing

d P

d sP

[
e sλ

(
1+ s

2λ

)Γ]
s=0

= 0. (5.56)

Finally, we can rewrite Eq. (5.56) as a polynomial in γ+ iω

P∑
t=0

aP t (λ)(γ+ iω)t = 0, (5.57)
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Figure 5.9: Blue dots: roots of the polynomial in Eq. (5.57), which corresponds to the solution
of the Boltzmann equation with a Lenard-Bernstein collision operator where the distribution
function is approximated by a truncated Hermite expansion, for λ = 50 (left) and λ = 0.5
(right) (corresponding to ν= 0.1 and 1, respectively) at P = 20. Red vertical lines: solutions of
Eq. (5.51).

with

apt (λ) =
p∑

l=t

p∑
n=l

(
p

n

)(
l

t

)
s(n, l )λp+l−n−t/2(−1)l−t 2t/2, (5.58)

where s(n, l ) are the Stirling numbers of the first kind (Moser & Wyman, 1958; Qi, 2014). As

shown in Fig. 5.9, the polynomial expression in Eq. (5.57) closely reproduces the eigenvalue

spectrum observed in Fig. 5.8 (c) and (d). Therefore, although the coupling of the electron

distribution function with φ is crucial to reproduce the EPW roots, additional modes in the

eigenmode spectrum are related to solutions decoupled from the electrostatic potential φ,

subject to the truncation condition of the Hermite-Laguerre series, Eq. (5.35), with frequencies

similar to the ones of Eq. (5.51).

As a second test, to assess the validity of the eigenmode spectrum found with an electron-

ion collision operator in Fig. 5.8, we solve the Boltzmann equation using a different set of

basis functions, namely expanding 〈δ fk〉 in Legendre polynomials, Eq. (5.28), and solving the

resulting moment-hierarchy equation, Eq. (5.28), numerically. In this case, the expansion of

〈δ fk〉 in Eq. (5.27) is truncated at lmax = L by setting aL+1 = 0. The velocity v is discretized over

an interval [0, vmax] with an equidistant mesh made of nv points, and the integral estimated

with a composite trapezoidal rule. The resulting spectrum is shown in Fig. 5.10. When

compared with the Hermite-Laguerre spectrum in Fig. 5.8 (e) and (f), the two spectra look

qualitatively similar, confirming the validity of the Hermite-Laguerre approach. However,

a higher number of small-damped low-frequency solutions is observed when a Legendre

decomposition is used. The appearance of small-damped non-physical eigenmodes when

using a finite-difference discretization in v was also noted by Bratanov et al. (2013), leading

to the conclusion that, in general, a Hermite discretization of the distribution function is in

fact superior to a finite difference one. Furthermore, for the values of ν= 0.02 and αD = 0.09

where the Hermite-Laguerre formulation with (P +1)(J +1) = 19×3 = 57 polynomials is seen
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Figure 5.10: Eigenvalue spectrum of the truncated moment-hierarchy equation using an
electron-ion Coulomb collision operator for ν= 0.1 (left) and ν= 1.0 (right) with αD = 0.09,
nv = 12 and L = 7, with a Legendre decomposition. The collisionless solution is shown with a
red marker.

to converge to the collisionless Landau solution in Fig. 5.6 with a relative difference of ∼ 16%,

when using a Legendre decomposition, a total of nv ×L ' 100 equations is needed to yield a

similar accuracy on γ.

5.6 Conclusion

In this chapter, a first numerical study based on the model introduced in Chapter 2 is pre-

sented. In particular, the effect of linearized full Coulomb collisions on electron-plasma waves

is studied by taking into account both electron-electron and electron-ion collisions. The anal-

ysis is performed using an expansion of the distribution function and the Coulomb collision

operator in a Hermite-Laguerre polynomial basis. The proposed framework is particularly

efficient, as the number of polynomials needed in order to obtain convergence is low. Multiple

scans are performed and a comparison between several collision operators at arbitrary colli-

sionalities is presented. While the use of electron-ion collisions alone leads to a damping rate

slightly smaller than the one evaluated with the full Coulomb operator, the damping rate using

a Lenard-Bernstein or a Dougherty collision operator yields deviations up to 50% larger with

respect to the Coulomb one. An eigenmode analysis reveals major differences between the

spectrum of full Coulomb and simplified collision operators. In addition, the eigenspectrum

shows the presence of purely damped modes that correspond to the entropy mode. At high

collisionality, the entropy mode is observed to set the long time behavior of the system with

a damping rate smaller than the Landau damping of EPW. We demonstrate that the entropy

mode needs a full Coulomb collision operator for its proper description. Finally, we find an

analytical dispersion relation for the entropy mode that accurately reproduces the numerical

results.
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6 Theory of the Drift-Wave Instability at
Arbitrary Collisionality

Drift-waves (DW) are low-frequency modes that arise in a magnetized plasma when a finite

pressure gradient is present, and are driven unstable when electron adiabaticity is broken,

such as in the presence of finite resistivity, electron inertia or wave-particle resonances. Due

to the ubiquitous presence of pressure gradients and adiabaticity-breaking mechanisms in

plasmas, the DW instability plays a role in many plasma systems (Goldston & Rutherford, 1995).

Indeed, DW are known to regulate plasma transport across the magnetic field in laboratory

plasmas (Horton, 1999; Scott, 2002; Burin et al., 2005; Poli et al., 2008; Schaffner et al., 2012;

Mosetto et al., 2013), and are also thought to be relevant for the understanding of fundamental

transport processes occurring in active galactic nuclei (Saleem et al., 2003), dense astrophysical

bodies (Wu et al., 2008), the Earth’s magnetosphere (Shukla & Bujarbarua, 1980), and dusty

plasmas (Salimullah et al., 2009). In addition, the understanding of DW is crucial since the

physics underlying a number of important plasmas instabilities, such as the electron- and

ion-temperature gradient modes, resistive modes, and ballooning modes (Stix, 1992), relies on

the same mechanisms at play in DW.

Although DW are the subject of a large number of previous studies, the effect of colli-

sionality on the linear properties of these modes remains insufficiently understood. This is

particularly worrisome since collisionality has been found to have both stabilizing (Stix, 1992)

and destabilizing effects (White, 2014) on DW. Previous studies on the DW instability at finite

collisionality have usually relied on simplified collision operators (Angus & Krasheninnikov,

2012), or on fluid models such as the Hasegawa-Wakatani (Hasegawa & Wakatani, 1983) or

the drift-reduced Braginskii model (Ricci et al., 2012), which assume that the electron and ion

collision frequencies are high enough so that the particle mean free path stays small when

compared with the mode parallel wavelength, k∥λm f p ¿ 1.

In the present chapter, as a second investigation of the model described in Chapter 2, we

overcome this long-standing issue and provide an efficient framework, which can be easily

extended to a large number of instabilities in magnetized plasmas, to properly study the

effect of collisionality in DW at arbitrary mean free path. Here, we focus on the case where

the DW driving mechanism is provided by the density gradient, usually referred to as the
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universal instability (Landreman et al., 2015), in a shearless slab geometry. For simplicity, we

consider the case where B is uniform. The DW growth rate that we evaluate matches both

the collisionless and fluid regimes at low and high collision frequencies, respectively, and

shows important deviations from the collisional limit already at k∥λm f p ∼ 0.1. Furthermore,

at low-to-intermediate collisionality values, the regime of interest for future tokamak devices

such as ITER (Aymar et al., 2002), we show the need to retain the full Coulomb collision

operator. Indeed, the DW growth rate deviates by factors of order unity from fluid and kinetic

models based on approximate collision operators such as the Lenard-Bernstein (Lenard &

Bernstein, 1958) and the Dougherty (Dougherty, 1964) operators. These operators, by being

implemented in a number of advanced kinetic codes, are used in recent studies of DW-like

turbulence, both in the core (Hatch et al., 2013; Nakata et al., 2016; Grandgirard et al., 2016;

Mandell et al., 2018) and at edge (Shi et al., 2017; Pan et al., 2018) regions of tokamak devices.

Since quasi-linear transport models estimate the turbulence drive by evaluating the linear

instability growth rate (Chen et al., 2000; Bourdelle et al., 2015), quantitative differences in

the growth rate have a large impact on the prediction of the level of transport, in particular

by affecting the threshold for E×B shear flow stabilization. Similarly, the linear growth rate,

together with the gradient removal hypothesis (Ricci & Rogers, 2013), is used to predict the

SOL width, a parameter crucial to the overall performance of present and future tokamak

devices such as ITER (Halpern et al., 2013b). Therefore, our results can impact ITER operation

and the design of future fusion devices.

As for the EPW, in addition to the instability growth rate, the framework we propose allows

the evaluation of the spectrum of the linear eigenmodes. The spectrum of DW collisional

eigenmodes, contrary to the collisionless case, is composed of a discrete set of roots, as first

shown in (Ng et al., 1999). Deviations between the results based on the Coulomb and both

the Lenard-Bernstein and Dougherty collision operators are particularly evident. The clear

differences question our current understanding of plasma turbulence. In fact, several DW

turbulence studies have shown that subdominant and stable modes can be nonlinearly excited

to finite amplitude (Terry et al., 2006; Hatch et al., 2011a,b; Pueschel et al., 2016) and have

a major role in nonlinear energy dissipation and turbulence saturation, affecting structure

formation, as well as heat and particle transport. The computation of such modes relies on

the correct evaluation of the eigenmode spectrum. As we show, this displays large changes

between the Coulomb and approximate collision operators.

This chapter is organized as follows. In Section 6.1, the basic mechanism behind the

dynamics of DW is described. Section 6.2 derives the moment-hierarchy formalism at arbi-

trary collisionality used to study the DW instability. In Section 6.3, the numerical results are

presented. The conclusions follow in Section 6.4. We note that the results described in the

present chapter have been published in (Jorge et al., 2018).
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6.1 Fundamental Mechanisms Determining the Drift-Wave Dynam-

ics

We consider a magnetized plasma in a straight and uniform magnetic field B along the z

direction. Only electrostatic perturbations are studied, such that B = Bez with B constant and

(ex ,ey ,ez ) the Cartesian unit vectors. In addition, we focus on scales L larger than the Debye

length λD =
√

T0/(4πn0e2) ¿ L, so that the plasma can be considered to be quasineutral, i.e.,

ne ' ni ' n. (6.1)

For the ion species, we consider the ion continuity equation

∂n

∂t
+∇· (nui ) = 0, (6.2)

with ui the ion fluid velocity given, in the cold ion limit, by the momentum equation

mi
dui

d t
=−e∇φ+eui ×B. (6.3)

Solving Eq. (6.3) for the perpendicular ion velocity u⊥i = (b×ui )×b, and neglecting O(ω/Ωi )

polarization effects, we obtain the E×B drift velocity

u⊥i =−∇φ×B

B 2 . (6.4)

The equation for the ion parallel velocity u∥i = ui ·b is obtained by projecting Eq. (6.3) along B,

yielding

mi
du∥i

d t
=−e∇∥φ. (6.5)

For the electron species, we consider the force balance between the electron pressure gradient

and the electric field

−∇(nTe )

n
+e∇φ= R, (6.6)

where R includes the terms that represent electron inertia and collisions with ions, and whose

expression can be found in the work of Braginskii (Braginskii, 1965). In the following, Te is

assumed to be constant.

We now linearize Eqs. (6.2) to (6.6) by expressing n = n0(x) + δn(y, z), where n0(x) =
n00e

x
Ln is the background density, δn ¿ n0 is the fluctuating density. We assume no back-

ground electrostatic potential and no background ion velocity, thus expressing φ as φ =
δφ(y, z) and ui as ui = δui (y, z). By Fourier-transforming perturbed quantities, e.g., δn =∫
δnk (k⊥,k∥)e iω−i k⊥y−i k∥z dk∥dk⊥dω, the ion continuity equation, Eq. (6.2), and parallel ion
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momentum equation, Eq. (6.5), when coupled to the E×B velocity in Eq. (6.4), yield

iωδnk − i k∥n0δu∥i − i
k⊥δφk

B

n0

Ln
= 0, (6.7)

and

mi n0iωδu∥i = ei k∥δφk , (6.8)

respectively, while the electron force balance equation, Eq. (6.6), yields

δnk

n0
= eδφk

Te
+ i Rk

Te k∥
. (6.9)

If collisional and inertial effects are neglected, i.e., R = 0, Eq. (6.9) shows that the electrostatic

potential is related to the electron density via

δnk

n0
' eδφk

Te
. (6.10)

The condition in Eq. (6.10) is known as Boltzmann response or electron adiabaticity condition.

Finally, using the ion continuity equation, Eq. (6.7), the ion parallel momentum equation,

Eq. (6.8), and the electron adiabaticity condition, Eq. (6.10), the following dispersion relation

is obtained

ω2 −ω cs

Ln
k⊥ρs −k2

∥c2
s = 0. (6.11)

The k2
∥c2

s term points out the presence of sound waves, which propagate at phase velocity cs

along B. These waves result from the ion parallel velocity dynamics in Eq. (6.7). Neglecting

the coupling with sound waves, the dispersion relation in Eq. (6.11) yields the drift-wave

dispersion relation

ω= k⊥ρs
cs

Ln
. (6.12)

The frequency ω∗ = k⊥ρscs/Ln is the frequency of the drift-wave (also called diamagnetic

frequency), and the ratio ω∗/k⊥ = csρs/Ln is the phase velocity of the drift-wave (also called

diamagnetic velocity) .

We now analyze the DW mechanism in the presence of adiabatic electrons. In this case,

Eq. (6.10) shows that the electrostatic potential δφ follows the density perturbations δn, with

a zero phase-shift (see Fig. 6.1). The electrostatic potential, in turn, creates an electric field

δEk y =−i k⊥δφk which, according to Eq. (6.4), results in an E×B drift in the x direction, i.e.,

u⊥i = i k⊥δφk /Bex . As shown in Fig. 6.1, this drift has a maximum at δn = 0 and vanishes

when δn is at its maximum or minimum. Therefore, the E×B velocity and density fluctuations

are 90º out of phase. The motion of the plasma along the x direction, driven by the E×B

velocity, leads to the propagation of the perturbed density to the right, along the y direction,
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Figure 6.1: Propagation of drift-waves through an inhomogeneous plasma, with the back-
ground density n0(x) is shown in blue. Perturbed density δn and electrostatic potential δφ
fluctuations are considered to be sinusoidal in the y direction. Perturbations in the z direction
are not shown for simplicity. The resulting E×B velocity, vE , is shown to drive an oscillation of
the wave to the right, in the y direction, by convecting plasma with higher density to the right
of the peak of δn, and plasma with lower density to the left of the peak.

giving rise to the drift-wave.

We note that for finite R, a phase-shift is introduced between the electron density and

electrostatic potential, resulting in a net transport of particles. In order to accurately describe

particle transport in magnetized plasma systems at arbitrary collisionalities, we derive in the

next section a moment-hierarchy formalism for DW.

6.2 Moment-Hierarchy Model

While in the EPW case of Chapter 5, the unmagnetized electron kinetic equation was con-

sidered, here we consider the effect of a constant magnetic field and both electron and ion

distribution functions are evolved. Under the drift approximation (see Section 2.1), the frame-

work to properly treat DW at arbitrary collisionalities is provided by the drift-kinetic equation

∂Fa

∂t
+ (

v∥b+vE
) ·∇Fa −∇∥φ

qa

σ2
a

∂Fa

∂v∥
=∑

b

〈Cab〉 , (6.13)

where Fa = Fa(R, v∥,µ, t ) is the guiding-center distribution function of the species a (a = e, i

for electrons and ions, respectively), which depends on the guiding-center coordinate R,
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the component of the velocity parallel to the magnetic field v∥, the first adiabatic invariant

µ = ma v2
⊥/2B with ma the mass of the species a and B the modulus of the magnetic field

B, and time t (Hazeltine & Meiss, 2003). The charge qa , the electrostatic potential φ, the

parallel and perpendicular scale lengths, v∥, and t , are normalized to the elementary charge

e, Te0/e, Ln , ρs = cs/Ωi , cs =
p

Te0/mi , cs/Ln respectively, with Te0 a reference temperature,

Ln the background density gradient length, andΩi = eB/mi . In addition, vE = (Ln/ρs)b×∇φ
is the dimensionless E×B velocity, σa =p

ma/mi , 〈Cab〉 =
∫ 2π

0 dθCab/(2π) is the gyroaverage

operator with θ the gyroangle, and the Coulomb collision operator is given by Eq. (2.32). In

this chapter, we define νab to be the characteristic collision frequency between species a

and b normalized to cs/Ln . The drift-kinetic equation in Eq. (6.13) corresponds to the one

in Eq. (2.41) when B is assumed constant and higher order (1/Ωa)dU/d t are neglected. The

drift-kinetic equation is coupled to Poisson’s equation, Eq. (2.132), which with a constant

magnetic field, in the quasineutral and cold-ion limit yields∑
a

qa Na
(
1+σ2

a∇2
⊥φ

)= 0. (6.14)

In Eq. (6.14), we define Na = ∫
Fad v∥dµdθB/(ma N0).

Similarly to Chapter 5, we linearize Eq. (6.13) by expressing Fa = FaM (1 + δ fka) with

δ fka ¿ 1 and FaM an isotropic Maxwellian equilibrium distribution function of constant

temperature Ta0 and of density N0 that varies perpendicularly to the magnetic field on the Ln

scale. This yields

(γ+ i k∥v∥)δ fka = i
(
k⊥−qak∥v∥

)
δφk +

∑
b 〈Cab〉
FaM

, (6.15)

where Cab is the linearized version of the collision operator in Eq. (5.2), γ is the growth

rate, k∥ is the wave-number parallel to B, and k⊥ is the wave-number along the direction

perpendicular to both B and the direction of ∇N0. As for the EPW case, in this work, we solve

Eq. (6.15) at arbitrary collisionality by expanding the distribution function into an orthogonal

Hermite-Laguerre polynomial basis, Eq. (2.50), which for T∥a = T⊥a = Ta in normalized units

reads

fa1 =
∑
p, j

N p j
a√

2p p !
Hp

(
v∥σap

2τa

)
L j

(
µB

Ta0

)
, (6.16)

with Hp (x) the physicists’ Hermite polynomials, L j the Laguerre polynomials, and τa =
Ta0/Te0. By projecting Eq. (6.15) into a Hermite-Laguerre basis, a moment-hierarchy for

the evolution of the coefficients of the expansion of δ fka , N p j
a , is obtained
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γN p j
a =−i k∥

p
τa

σa

(√
p +1N p+1 j

a +p
pN p−1 j

a

)
+ iδφk

(
k⊥δp,0 −

qak∥p
τaσa

δp,1

)
δ j ,0 +

∑
b

C p j
ab ,

(6.17)

with C p j
ab = ∫ 〈Cab〉Hp L j d v∥dµ2πcsB/(N0ma

√
2p p !) the projection of the Coulomb collision

operator Cab onto a Hermite-Laguerre basis. Similarly to Chapter 5, the Hermite-Laguerre

moments of the linearized collision operator C p j
ab are obtained by leveraging the work in (Ji &

Held, 2006), where Cab is projected onto a tensorial Hermite and associated Laguerre basis,

pl k = Pl (c)Ll+1/2
k (c2). This yields the gyroaveraged collision operator moments C p j =∑

b C p j
ab

in Eq. (5.20). In addition, we note that, by neglecting ion dynamics and the perpendicular

wavevector k⊥ in Eq. (6.17), we retrieve the EPW moment-hierarchy in Chapter 5.

A closed form solution for the DW moment-hierarchy can be given in the collisionless

case Cab = 0 by dividing the Boltzmann equation, Eq. (6.15), by the resonant γ+ i k∥v∥ factor,

multiplying by the Hermite-Laguerre polynomial basis functions, and integrating over velocity

space, yielding

N p j
a =

(
−qaξa

τa
+ σak⊥

k∥
p
τa

)
(−1)p√

2p p !
Z (p) (ξa)δφkδ j ,0 − qa

τa
δφkδp,0δ j ,0, (6.18)

where Z (p)(ξa) is the pth derivative of the plasma dispersion function Z (ξa) = Z (0)(ξa), defined

by Z (p)(ξa) = (−1)p
∫ ∞
−∞ Hp (x)e−x2

/(x −ξa)d x/
p
π and ξa = ωσa/(k∥

p
2τa). Equation (6.18)

generalizes the Hermite spectrum obtained for electron-plasma waves, Eq. (5.32), and extends

Hammet-Perkins-like collisionless closures obtained for N 30
a and N 40

a (Hammett et al., 1992)

to a moment N p j
a of arbitrary order in a form ready to be used.

The Chapman-Enskog procedure with truncation of the moment-hierarchy in Eq. (6.17)

at p = 3 and j = 1 can be used in the high collisionality limit, k∥λm f p ¿ 1. Neglecting sound

wave coupling and assuming cold ions, this yields the continuity equation

γN =−i (k∥V −k⊥δφk ), (6.19)

with N = N 00
e the electron density normalized to N0, V = N 10

e /σe the electron parallel fluid

velocity normalized to cs , the electron temperature equation

γT =−i k∥cV V −
k2
∥
ν

(χ∥T +0.12∆T ), (6.20)

where T = (
p

2N 20
e −2N 01

e )/3 is the electron temperature normalized to Te0,∆T =p
2N 20

e +N 01
e

the temperature anisotropy normalized to Te0, and ν the Spitzer resistivity normalized to cs/Ln ,

the vorticity equation

k2
⊥γδφk = i k∥V , (6.21)
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Figure 6.2: Growth rate of the DW instability obtained from the moment-hierarchy, Eq. (6.17),
as a function of (k∥,k⊥) and, from left to right, νei = 0.05,1,10, and 500, in the cold-ion limit
with σe = 0.023.

Ohm’s law

σ2
eγV = i k∥(δφk −N − cT T −0.90∆T )−νV , (6.22)

and temperature anisotropy variation

γ∆T =−12.02
ν

σ2
e
∆T −2.71i k∥V −

k2
∥
ν

(0.55T +0.52∆T ). (6.23)

In Eqs. (6.20) and (6.22), we have defined the coefficients (cT ,cV ,χ∥) = (1.26,1.88,0.46). When

temperature anisotropy is neglected (i.e.,∆T = 0), the following dispersion relation is obtained

σ2
eγ

3 +νγ2 + 1+k2
⊥

k2
⊥

k2
∥γ−

i k2
∥

k⊥
+

cV cT k2
∥νγ

2

νγ+χ∥k2
∥

= 0, (6.24)

which reduces to the drift-reduced Braginskii dispersion relation that has similar coefficients

(cV ,cT ,χ∥) = (1.14,1.71,1.07) (Zeiler et al., 1997) (we have checked that the values of the

coefficients (cT ,cV ,χ∥) approach those computed by Braginskii as the order of the closure is

increased). We also note that for resistivity driven DW (ν > γme /mi ) the peak growth rate,

γ' 0.12, is found at k⊥ ' 1.19 and k∥ = 1.49
p
ν. If the resistivity ν in Eq. (6.24) is tuned to values

lower than the ones allowed by the fluid approximation (ν < γme /mi ) an electron-inertia

driven DW is obtained with a peak growth rate γ' 0.29 at k⊥ ' 1.00 and k∥ ' 0.48
p

me /mi .

At intermediate collisionality, the moment-hierarchy equation, Eq. (6.17), together with

Poisson equation have to be solved numerically. In this case, a criterion to truncate the mo-

ment expansion at a suitable order p = P and j = J can be derived by following Schekochihin

et al. (2016) where the Lenard-Bernstein operator case was considered. To derive the trun-

cation criterion, we introduce the Fourier harmonics gp j = i p sgn(k∥)p N p j
a , and insert them

in the moment-hierarchy equation, Eq. (6.17), noting that at sufficiently high index p, gp
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Figure 6.3: Comparison of the growth rate γ maximized over k∥ and k⊥, as a function of
collisionality νei , between the solution of the drift-reduced Braginskii model, the collisionless
model, the linearized moment-hierarchy using a simplified Lenard-Bernstein, Dougherty,
and the Coulomb collision operator. For the Coulomb case, truncation at different (P, J) is
considered.

can be considered continuous and differentiable in p, and therefore gp±1 ' gp ±∂p gp . By

keeping only the terms proportional to N p j
a in the sum in Eq. (5.20), namely approximating

C p j
ab '−νab fp j N p j

a and effectively underestimating the collisional damping contribution of

C p j
ab , we obtain gp ' g0 exp[−(4γ

p
p +2

∫ p fp j p−1/2)/pca]/p1/4 at the lowest order in 1/p, with

pca = 4|k∥|pτa/(σaνai ). While for the case of the Lenard-Bernstein and Dougherty operators,

since fp j = p +2 j for large p and j , the solution gp ' g0 exp[−4(γ
p

p +p3/2/3)/pca]/p1/4 can

be obtained analytically, the coefficients fp j for the case of Coulomb collisions are found

numerically to follow approximately fp j ' A
p

p, with A ' 0.5. Such estimate yields

N p j
a '

N0( j )i p sgnkp
∥

p1/4
exp

[
−

(
p

pγa

) 1
2 −2A

p

pca

]
. (6.25)

showing that the moment-hierarchy can be truncated at P ' pca or, if k∥λm f pa > 2γ2/A, at

P ' pγa = p2
ca/(16γ2) (Zocco & Schekochihin, 2011). This removes the need of ad hoc closures

for the moment-hierarchy even at low collisionalities. Regarding the truncation in j , since the

magnetic field is uniform, no perpendicular phase-mixing in Eq. (6.17) is present, and j > 0

moments are present due to collisional coupling in C p j
ab . Therefore, at zero collisionality, the

j > 0 moments vanish [see Eq. (6.18)]. At high collisionality, the Chapman-Enskog closure

shows that j > 1 moments are collisionally damped. At intermediate collisionality, numerical

tests show that only moments j ≤ 2 impact the growth rate.
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6.3 Numerical Results

The numerical solution of the moment-hierarchy, Eq. (6.17), in the cold-ion limit with τi = 0.01

and σe = 0.023 is shown in Fig. 6.2, where the maximum growth rate is computed over the

(k∥,k⊥,νei ) parameter space. The value of k∥ at the peak growth rate is seen to increase with

νei at large value of the resistivity, as expected from the resistive fluid dispersion relation.

For small values of resistivity it converges to k∥ ' 0.0074 ' 0.32σe , a value close to the fluid

predictions for electron-inertia driven DW. The peak growth rate is observed to stay at k⊥ ' 1

across all values of collisionality, as also expected from the fluid theory. By selecting the k∥
and k⊥ that yield the largest growth rate γ, Fig. 6.3 shows a comparison between the peak

growth rate resulting from the fluid model, Eq. (6.24), with the Braginskii values for (cV ,cT ,χ∥),

the collisionless model, Eq. (6.18), and the moment-hierarchy using the Lenard-Bernstein,

Dougherty, and the Coulomb collision operator solving for a different number of moments.

The linearized moment-hierarchy model approaches the collisionless and the drift-reduced

Braginskii model limits, at νei ¿ 1 and (νei )−1 ¿ 1 respectively. Deviations of the peak

growth rate of the moment-hierarchy from the drift-reduced Braginskii occur at values of

collisionality νei . 10, and from the collisionless limit at νei & 2×10−2. This corresponds to

the range 0.1 . k∥λm f p . 100 (at the k∥ of the peak growth rate), a range that overlaps with

the regime of operation relevant for present and future tokamak machines (Pitts et al., 2011).

Deviations of up to 50% with respect to the Lenard-Bernstein and Dougherty operators arise

on both the peak growth rate and its corresponding k∥ and k⊥. We note that convergence

is observed for P = 15 and J = 2 up until νei ∼ 10−1. The observed value of P is close to the

estimate in Eq. (6.25), which for νei = 10−1 and k∥ ' 0.32σe yields P ' pce ' 13. We remark

that pseudospectral decompositions converge exponentially with the number of modes used.

Therefore, with respect to finite-difference methods that display algebraic convergence, the

framework proposed here is particularly efficient for numerical implementation.

We compare in Fig. 6.4 the spectra obtained with the collisionless model, and with the

Dougherty and the Coulomb collision operators in the moment-hierarchy at νei = 0.4 for

the values of (k∥,k⊥) that yield the largest γ. Figure 6.4 shows a clear difference between the

eigenmode spectra of the two operators. While modes with finite frequency are related to

the damping of electron distribution function, modes at ω¿ 1 are due to strong collisional

damping of the cold-ion distribution function. The damping rate of the electron modes

decreases with the frequency when the Coulomb collision operator is considered, contrary to

the Dougherty case. This is possibly related to the fact that the collisional drag force decreases

with the particle velocity in the Coulomb collision operator and increases in the Dougherty

one. We note that the eigenmode spectrum using the Dougherty collision operator in Fig. 6.4

is similar to the one obtained in Bratanov et al. (2013) using a Lenard-Bernstein one.
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Figure 6.4: Eigenvalue spectra obtained with the collisionless model, the linearized moment-
hierarchy equation using the Coulomb and the Dougherty collision operator at the wave-
number (k∥, k⊥) corresponding to the fastest growing mode in the cold-ion limit for νei = 0.4
and σe = 0.023. The analysis is carried out with P = 15 and J = 2.

6.4 Conclusion

In this chapter, Coulomb collisions are taken into account in the description of magnetized

plasma instabilities at arbitrary collisionalities, focusing on the linear properties of the DW

instability. The analysis we perform in a relatively simple configuration shows that the correc-

tions introduced by the full Coulomb collision operator with respect to simplified collision

operators, presently used in state-of-the-art codes, are qualitatively and quantitatively signifi-

cant at the relevant collisionality regime of operation of future nuclear fusion devices such as

ITER. The results of the present chapter show that the kinetic models introduced in Chapters 2

and 3 are a particularly efficient numerical framework to treat Coulomb collisions that can

easily be to study other instabilities in magnetized plasmas. Indeed, by projecting onto a

Hermite-Laguerre basis the drifts that arise in the Boltzmann equation from possible inhomo-

geneities of the magnetic field, instabilities such as the ballooning mode, can be described

within the framework presented here. Furthermore, we expect that the framework we have

introduced in the present thesis can be extended to nonlinear simulations.
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7 Conclusions and Outlook

This thesis focuses on the plasma dynamics at the tokamak periphery. Despite its importance

for the success of the magnetic confinement fusion program, the development of a model

for the tokamak periphery has been hindered by the fact that this region is characterized

by fluctuation levels of order unity, by the presence of both closed and open magnetic flux

surfaces, and by a wide range of temperatures and densities that result in a wide range of

collisionalities. These challenges, as shown in the present thesis, can be overcome by the use

of moment expansion methods with a suitable set of basis functions that allows a convenient

expression of the integro-differential Coulomb collision operator.

In Chapter 2, a moment-hierarchy model is developed from a first-principles based, full-F,

drift-kinetic model, suitable to describe the plasma dynamics in the SOL region of tokamak

devices at arbitrary collisionality. Taking advantage of the separation between the turbu-

lent and gyromotion scales, a gyroaveraged Lagrangian and its corresponding equations of

motion are obtained. The gyroaveraged distribution function is then expanded into a Hermite-

Laguerre basis, and the coefficients of the expansion are related to the lowest-order gyrofluid

moments. The fluid moment expansion of the Coulomb operator in terms of irreducible

Hermite polynomials is reviewed, and its respective particle moments are written in terms of

coefficients of the Hermite-Laguerre expansion, relating both expansions. This allows us to

express analytically the moments of the collision operator in terms of guiding-center moments.

A moment-hierarchy that describes the evolution of the guiding-center moments is derived,

together with a Poisson’s equation accurate up to second order. The resulting set of equations

is then used to derive a fluid model in the high collisionality limit. The results of this chapter

are published in Jorge et al. (2017).

In Chapter 3, a full-F gyrokinetic moment-hierarchy able to evolve the turbulent plasma

dynamics in both the tokamak edge and SOL regions is derived. Taking advantage of the

spatial scale separation between turbulent fluctuations and magnetic field gradients, and

the low-frequency of the fluctuations compared to the ion gyrofrequency, a single-particle

Lagrangian is obtained using two successive noncanonical coordinate transformations in

order to take into account fluctuations present at the k⊥ρs scale. Such transformations are
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derived using Lie transform perturbation theory. The resulting gyrokinetic equation is then

projected onto a Hermite-Laguerre polynomial basis, allowing us to express the gyroaverage

of plasma quantities in a closed analytical form. The electrostatic fields are evolved using

a gyrokinetic formulation of Maxwell’s equations, expressed in terms of coefficients of the

moment-hierarchy expansion coefficients.

Chapter 4 complements the gyrokinetic moment-hierarchy model of Chapter 3 by deriving

a moment-hierarchy formulation of the full-F gyrokinetic Coulomb collision operator, valid in

both the electrostatic and in the electromagnetic regime. The Coulomb collision operator at

arbitrary k⊥ρi is ported to a phase-space coordinate system suitable to describe magnetized

plasmas, i.e., to guiding-center and gyrocenter coordinate systems, and projected onto a

Hermite-Laguerre basis. This allows us to describe the plasma dynamics and turbulence in

the tokamak periphery at arbitrary collisionalities and fills a gap in the literature by providing

full Coulomb moments for full-F gyrofluid models.

In Chapter 5, following ?, the effect of full Coulomb collisions on electron-plasma waves

is studied by taking into account both electron-electron and electron-ion collisions. The

proposed framework is particularly efficient, as the number of polynomials needed in order

to obtain convergence is low enough to allow multiple scans to be performed, particularly a

comparison between several collision operators at arbitrary collisionalities. While the use of

electron-ion collisions alone leads to a damping rate slightly smaller than the one evaluated

with the full Coulomb operator, the damping rate using a Lenard-Bernstein or a Dougherty

collision operator yields deviations up to 50% larger with respect to the Coulomb one. An

eigenmode analysis reveals major differences between the spectrum of full Coulomb and

simplified collision operators. In addition, the eigenspectrum shows the presence of purely

damped modes that correspond to the entropy mode. We demonstrate that the entropy mode

needs a full Coulomb collision operator for its proper description, deriving an analytical

dispersion relation for the entropy mode that accurately reproduces the numerical results.

Finally, in Chapter 6, the linear properties of the drift-wave instability are described at

arbitrary collisionalities for the first time. The analysis shows that the corrections introduced

by the full Coulomb collision operator with respect to simplified collision operators, presently

used in state-of-the-art codes, are qualitatively and quantitatively significant at the relevant

collisionality regime of operation of future nuclear fusion devices such as ITER. Indeed, the

drift-wave growth rate is seen to deviate by factors of order unity from fluid and kinetic models

based on simplified collision operators. The results of Chapter 6 are published in Jorge et al.

(2018).

With the present work, a crucial step towards a predictive model of tokamak turbulence

has been accomplished. Although the ordering used in this work when deriving the gyrokinetic

moment-hierarchy equation is, in principle, applicable to describe the plasma dynamics in the

whole machine, we focus on the tokamak periphery region as collisions are expected to limit

the number of terms in the expansion needed, making moment-expansion simulations more
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efficient than standard numerical methods. As a first step of the numerical implementation

of the proposed models, we have considered its linear version. However, plasma dynamics

at the tokamak periphery is essentially turbulent, therefore requiring the development of

nonlinear simulations. In this setting, future extensions of the present work should include the

development of sheath boundary conditions for moment-hierarchy non-linear simulations.

Finally, in order to properly address the treatment of peeling-ballooning modes and the

drift-Alfvén coupling in the edge region, an extension of the model derived here to include

electromagnetic perturbations will be addressed in a future publication (Frei et al., 2019).
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A Drift-Kinetic Basis Transformation

In the present Appendix, we derive the expressions for the coefficients T p j
al k appearing in

Eq. (2.81). These coefficients allows us to express up to order εεν the relation between fluid

M lk
a and guiding-center N l k

a moments via Eq. (2.83). As a first step, we define a transformation

similar to Eq. (2.81) but with isotropic temperatures between both bases

c l
aPl (ξa)Ll+1/2

k (c2
a) =

l+2k∑
p=0

k+bl /2c∑
j=0

T
p j
lka Hp

(
v∥−u∥a

vtha

)
L j

(
v

′2
⊥

v2
tha

)
, (A.1)

with the inverse transformation

Hp

(
v∥−u∥a

vtha

)
L j

(
v

′2
⊥

v2
tha

)
=

p+2 j∑
l=0

j+bp/2c∑
k=0

(
T

−1
)lk

p j a

× c l
aPl (ξa)Ll+1/2

k (c2
a),

(A.2)

The relation between the coefficients
(
T

−1
)lk

p j
and T

p j
lk is given by

(
T

−1
)l k

p j
=

p
π2p p !(l +1/2)k !

(k + l +1/2)!
T

p j
lk . (A.3)

By integrating both sides of Eq. (A.1) over the whole velocity space, we can write T
p j
lk as

T p j
lk =

∫
Pl (ξ)c l Ll+1/2

k (c2)
Hp (s∥)L j (s2

⊥)

2p p !
p
π

e−s2
∥−s2

⊥d s∥d s2
⊥, (A.4)
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where we suppressed the species index a for simplicity, and find

T
p j
lk =

bl /2c∑
q=0

bp/2c∑
v=0

k∑
i=0

q∑
r=0

min( j ,i )∑
s=0

k−i∑
m=0

(−1)q+i+ j+v+m

2
3l+p

2 +m+v−r

×
(

l

q

)(
2(l −q)

l

)(
q

r

)(
r

j − s

)(
r

i − s

)(
s + r

s

)
r !

× (k − i + l −1/2)!(l +p +2(m − r − v)−1)!!

(p −2v)!(k − i −m)!(l +m −1/2)!v !m!
.

(A.5)

We then integrate both sides of Eq. (2.81) with weights Hl (s∥a)L j (s2
⊥a), with the argument

transformation

Hp (s∥a) =
(

Ta

T∥a

)p/2 bp/2c∑
k=0

p !

k !(p −2k)!

(
1− T∥a

Ta

)k

Hp−2k

(
v∥−u∥a

vtha

)
, (A.6)

and

L j (s2
⊥a) =

j∑
k=0

(
j

j −k

)(
Ta

T⊥a

)k (
1− Ta

T⊥a

) j−k

Lk

(
v

′2
⊥

v2
tha

)
, (A.7)

to find the relation between the isotropic and anisotropic temperature coefficients

T p j
al k =

l+2k∑
m=0

k+blc2∑
n=0

n∑
z=0

bm/2c∑
d=0

(
n

n − z

)
m!δz, jδp,m−2d

d !(m −2d)!

×
(

T∥a

Ta

)p/2 (
T⊥a

Ta

)z (
1− Ta

T∥a

)d (
1− T⊥a

Ta

)n−z

T
mn
l k ,

(A.8)

(
T −1

a

)l k
p j =

j∑
z=0

bp/2c∑
d=0

p−2d+2z∑
t=0

z−d+bpc2∑
v=0

(
j

j − z

)
p !δl ,tδk,v

d !(p −2d)!

×
(

Ta

T∥a

)p/2 (
Ta

T⊥a

)z (
1− T∥a

Ta

)d (
1− Ta

T⊥a

) j−z (
T −1

)t v

p−2d z
.

(A.9)

A more efficient algorithm can be found as follows. First, we expand the product Pl (ξ)c l Ll+1/2
k (c2)
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into products of s∥ and s2
⊥ in order to write Eq. (A.4) in terms of s∥ and s2

⊥ only

Pl (ξ)c l Ll+1/2
k (c2) =

bl /2c∑
i=0

k∑
m=0

m+i∑
r=0

(
2l −2i

l

)(
l

i

)(
m + i

r

)
(−1)i+m(l +k +1/2)!)

2l (k −m)!(l +m +1/2)!m!

×
sl−2i+2r
∥ s2(m+i−r )

⊥
(T∥/T )l/2−i+r (T⊥/T )

. (A.10)

We then perform the parallel and perpendicular integrations separately, using the fact that∫ ∞

−∞
xn Hp (x)

2p p !
p
π

e−x2
d x = n!

2n

1− mod (n −p,2)(n−p
2

)
!p !

, (A.11)

and ∫ ∞

0
xmL j (x)e−x d x = m!

(
m

m − j

)
(−1) j . (A.12)

Finally, we apply Eqs. (A.11) and (A.12) to Eq. (A.4), yielding

T p j
lk =

bl /2c∑
i=0

k∑
m=0

m+i∑
r=0

(
2l −2i

l

)(
l

i

)(
m + i

r

)
(−1)i+m+ j (l +k +1/2)!

2l (k −m)!(l +m +1/2)!m!

×
(

m + i − r

m + i − r − j

)
(l −2i +2r )!

2l−2i+2r

1− mod (l −p,2)(
l−p

2 − i + r
)
!p !

(m + i − r )!. (A.13)
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B Expressions for the Moments of the
Collision Operator

In the present Appendix, we present the expressions for the guiding-center moments of the

collision operator relevant for the fluid model in Section 2.6. The collision operator moments

satisfy particle conservation

C 00
ab = 0, (B.1)

and momentum conservation at lowest order

C 10
aa = 0, (B.2)

C 10
ei =−mi

me

vth∥i

vth∥e
C 10

i e +O(me /mi ). (B.3)

Both the like-species and electron-ion satisfy energy conservation exactly, while the ion-

electron operator satisfies Eq. (B.4) at zeroth order in δa

T∥aC 20
ab −

p
2T⊥aC 01

ab = 0. (B.4)

The remaining moments C p j
ab , in the linear transport regime with∆Ta/Ta = (T∥a−T⊥a)Ta ∼

N 11 ∼ N 30 ∼ (u∥e −u∥i )/vthe ∼ δa , for ion-electron collisions are given by
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C 10
i e =−me

mi

vth∥i

vth∥e
C 10

ei , (B.5)
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me
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3
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Ti

∆Ti

Ti
, (B.6)

C 01
i e =−2νei

me
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(
Te −Ti

Ti

)
− 2νei

3

me
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Te

Ti

∆Ti

Ti
, (B.7)
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i e =−νei

√
3

2

me

mi

Q∥i

nTi vthi
, (B.8)

C 11
i e = 3νei

me

mi

Q⊥i

nTi vthi
, (B.9)

for electron-ion collisions

C 10
ei =−

p
2νei

6π3/2

u∥e −u∥i

vthe
+

p
2νei

10π3/2

Q∥e +2Q⊥e

nTe vthe
, (B.10)
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ei =−2

p
2νei

15π3/2

∆Te

Te
, (B.11)

C 30
ei =

p
3νei

10π3/2

u∥e −u∥i

vthe
− νei

70
p

3π3/2

31Q∥e −2Q⊥e
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ei = νei
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u∥e −u∥i

vthe
+ νei
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p

2π3/2

Q∥e −94Q⊥e

nTe vthe
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(B.14)

and for like-species collisions

C 20
aa = 0, (B.15)

C 30
aa =− 2

p
2

125
p

3π3/2
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nTa vtha
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19Q∥a −7Q⊥a

)
, (B.16)

C 11
aa =− 2

375π3/2

νaa

nTa vtha

(
7Q∥a −121Q⊥a

)
. (B.17)
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C Spherical Basis Tensors

We start with the definition of the Yl (v) tensor in terms of spherical basis tensors elm in

Eq. (4.39). For the l = 1 case, Eq. (4.39) yields

Y1(v) = v =
√

4π

3
v

1∑
m=−1

Y1m(φ,θ)e1m . (C.1)

The spherical basis vectors e1m can then be derived from Eq. (C.1) by decomposing the vector

v in spherical coordinates as

v = v
(
sinφcosθex + sinφsinθey +cosφez

)
, (C.2)

and using the identities for the spherical harmonics

Y1m(φ,θ) =


√

3
8π sinφe−iθ, m =−1,√
3

4π cosφ, m = 0,

−
√

3
8π sinφe iθ, m = 1,

(C.3)

therefore obtaining

e1m =


ex−i eyp

2
, m =−1,

ez , m = 0,

− ex+i eyp
2

, m = 1.

(C.4)

We now construct spherical basis tensors elm from the spherical basis vectors e1m leverag-

ing the techniques developed for the angular momentum formalism in quantum mechanics

(Zettili & Zahed, 2009; Snider, 2017). Indeed, the basis vectors e1m are eigenvectors of the
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Appendix C. Spherical Basis Tensors

angular momentum matrix Gz

Gz = i

0 −1 0

1 0 0

0 0 0

 , (C.5)

with eigenvalue m, that is

Gz ·e1m = me1m . (C.6)

In general, the angular momentum matrices along any axis n = x, y, z are given by

Gn =−i en ·ε, (C.7)

with ε the standard Levi-Civita tensor. In index notation, Eq. (C.7) can be written as

(Gn)kl =−i
3∑

j=1
(en) j ε j kl . (C.8)

The raising G+ and lowering G− operators (corresponding to the ladder operators in quantum

mechanics) are defined by

G± =Gx ± iGy . (C.9)

The allow us to obtain the basis vectors e1±1 from e10 using

G±e0m = e1±. (C.10)

Finally, we note that the dual basis e1
m = (e1

m)∗ = (−1)me1−m , together with e1m , satisfy

e1m ·e1
m′ = δm,m′ . (C.11)

To obtain the spherical tensor basis el m for the irreducible tensors Yl , we start with the

spherical basis tensor

el l = e11e11...e11, (C.12)

formed by the product of l basis vectors e11. Indeed, similarly to Yl (v), this tensor is of rank l ,

symmetric, and traceless between any of its indices, as e11 ·e11 = 0. Furthermore, we note that

el l is an eigenvector with eigenvalue l of the angular momentum tensor G l
z , with G l

n defined

by [
G l

n ·T l
]

j k...l
= ∑

j ′k ′...l ′

{
[Gn] j j ′ δkk ′ ...δl l ′ +

[
δ j j ′Gn

]
kk ′ ...δl l ′ + ...+δ j j ′δkk ′ ... [Gn]l l ′

}
T l

j ′k ′...l ′ ,

(C.13)
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where T l is an arbitrary tensor of rank l . The remaining basis tensor elements elm can be

obtained by applying the tensorial lowering operator G l− =G l
x − iG l

y to el l , namely

el m =
√

(l +m)!

(2l )!(l −m)!
G l

− ·l−m el l , (C.14)

with m = −l ,−l + 1, ...,−1,0,1, ..., l . The normalization factor in Eq. (C.14) is obtained by

requiring that the contravariant el m and the covariant el
m = (el

m)∗ basis tensors form an

orthonormal basis, i.e.,

el m ·el
m′ = δm,m′ . (C.15)

For computational purposes, we note that the tensor el m can also be written as a function of

the basis vectors e1m as (Snider, 2017)

el m = Nlm

b l+m
2 c∑

n=0
alm

n

{
(e11)m+n(e1−1)n(e10)l−m−2n

}
T S

, (C.16)

where Nlm =
√

(l +m)!(l −m)!2l−m/(2l )! and al m
n = l !/[2nn!(m +n)!(l −m −2n)!].
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D Gyrokinetic Basis Transformation

In this section, we derive a closed form expression for the T p j
l km and (T −1)lkm

p j coefficients

defined in Eqs. (4.67) and (4.68). By multiplying Eq. (4.67) by a Hermite and a Laguerre

polynomial and by an exponential of the form e−v2
, and integrating over the whole v∥ and µ

space, we obtain the following integral expression for T p j
lkm

T p j
lkm = vm−l

tha

2p p !
p
π

∫
v l

vm
⊥

P m
l

(
v∥
v

)
Ll+1/2

k

(
vm

tha

vm
⊥

)
Hp

(
v∥a

vtha

)
L j

(
v2
⊥

v2
tha

)
e
− v2

v2
tha

d v

2π
. (D.1)

We first write the integrand in Eq. (D.1) in terms of ξ= v∥/v and v coordinates using the basis

transformation in Eq. (4.68), yielding

T p j
lkm =

p+2 j∑
l ′=0

j+bp/2c∑
k ′=0

(l +1/2)k !

(l +k +1/2)!
T p j

l ′k ′

×
∫ 1

−1

P m
l (ξ)Pl ′(ξ)

(1−ξ)2
dξ

∫ ∞

0
x(l+l ′−m+1)/2

a Ll+1/2
k (xa)Ll ′+1/2

k ′ (xa)d xa ,

(D.2)

where we used the fact that (T −1)p j
l k = T p j

l k

p
π2p p !k !(l +1/2)/(k + l +1/2)! (Jorge et al., 2017).

The first integral in Eq. (D.2) is performed by expanding Pl as a finite sum of the form

Pl (x) =
l∑

s=0
c l

s xs , (D.3)

with the coefficients c l
s = 2l [(l+s−1)/2]!/[s!(l−s)!((s−l−1)/2)!], and using the relation between

associated Legendre functions P m
l (x) and Legendre polynomials Pl (x)

P m
l (x) = (−1)m(1−x2)m/2 d mPl (x)

d xm . (D.4)
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Appendix D. Gyrokinetic Basis Transformation

The second integral in Eq. (D.2) is performed by using the expansion of the associated Laguerre

polynomials in Eq. (2.69). The T p j
l km coefficient can then be written as

T p j
lkm =

p+2 j∑
l ′=0

j+bp/2c∑
k ′=0

T p j
l ′k ′

(l ′+1/2)k ′!
(l ′+k ′+1/2)!

k∑
m1=0

k ′∑
m2=0

l∑
s1=m

l ′∑
s2=0

Ll
km1

Ll ′
k ′m2

× c l
s1

c l ′
s2

2

s1!

(s1 −m)!

[
1+ (−1)s1+s2−m

]
s1 + s2 +1−m

(
m1 +m2 + l + l ′−m +1

2

)
!. (D.5)

The inverse transformation coefficients (T −1)l km
p j defined by Eq. (4.68) can be found similarly,

yielding

(T −1)lkm
p j = 2p p !

p
πk !(l +1/2)(l −m)!

(k + l +1/2)!(l +m)!
T p j

lkm . (D.6)
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