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Resumo

A compreensão detalhada da turbulência na SOL (Scrape-off Layer) é crucial para o sucesso da fusão

por confinamento magnético como um todo. Ela determina o confinamento global e a eficiência de

tokamaks futuros (tal como o ITER), governando a acumulação de calor na parede sólida do dispositivo,

regulando a dinâmica de impurezas e a reinserção de plasma. Aqui, o valor comum da frequência de

colisão é alto e as flutuações ocorrem em escalas maiores que o raio de Larmor iónico. Isto implica que a

dinâmica na SOL pode ser analisada através da descrição ”drift reduced” de Braginskii. O código GBS

integra numericamente estas equações, permitindo modelizar a evolução da dinâmica do plasma na

SOL em 3D, não separando as perturbações do equilı́brio, e investigando de maneira auto-consistente

a formação dos perfis resultantes do fluxo de plasma e calor do núcleo para a SOL e do transporte

oblı́quo às linhas de campo proveniente da turbulência gerada por diversas instabilidades. Neste

trabalho, o código GBS foi modificado para a configuração da SOL do tokamak ISTTOK, comprovando

o carácter “ballooning” da turbulência, onde o comprimento tı́pico dos gradientes aumenta na região

de má curvatura, e determinando o mecanismo de saturação não-linear através da hipótese “gradient

removal”. Utilizando um código linear, foi determinada a influência da torsão magnética, resistividade,

fator de segurança e efeitos eletromagnéticos na taxa de crescimento linear das instabilidades presentes

na SOL do ISTTOK. Uma estimativa para o comprimento caracterı́stico do gradiente de pressão é obtida

para os resultados experimentais.

Palavras-chave: fı́sica de plasmas, fusão por confinamento magnético, scrape-off layer, tur-

bulência de plasma, ISTTOK, transporte turbulento
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Abstract

Understanding Scrape-off Layer (SOL) turbulence is crucial for the success of the entire magnetic confine-

ment fusion program. It determines the overall confinement and performance of future tokamaks (such

as ITER), governs the heat load on the vessel wall, and regulates the impurity dynamics and plasma

refueling. In the SOL, the collision frequency is large and the fluctuations occur on scales larger than

the ion Larmor radius. This implies that plasma dynamics in the SOL can be investigated with the

drift-reduced Braginskii equations. The GBS code numerically integrates these equations, allowing us to

model the evolution of the SOL plasma dynamics in 3D, without separation between perturbations and

equilibrium, modeling therefore the self-consistent formation of the plasma profiles resulting from the

plasma and heat outflowing from the core to the SOL, the cross-field transport arising from turbulence

driven by a number of instabilities and parallel losses at the sheaths. In this work the GBS code has

been ported to ISTTOK’s SOL configuration, asserting the ballooning character of turbulence in the SOL,

where the typical gradient length increases at the bad curvature region, and determining the non-linear

saturation mechanism through the gradient removal hypothesis. Through a linear code, we determined

the influence of the magnetic shear, safety factor, resistivity and electromagnetic effects in the linear

growth rate of the instabilities at play in ISTTOK’s SOL. An estimate for the typical pressure gradient

length is obtained for the experimental results.

Keywords: plasma physics, magnetic confinement fusion, scrape-off layer, plasma turbulence,

ISTTOK, turbulent transport
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1
Introduction

1.1 Quest for Energy

In 2012, fossil fuels in Portugal represented 74.9 % of total energy consumption [7]. In the United

States (Fig. 1.1), that number rises to 83.6 %. There are countries like Algeria, United Arab Emirates,

Turkmenistan, Saudi Arabia, Qatar, Oman and Kuwait where we see numbers above 95 %. Can this

consumption be sustainable?

Over time, oil companies discovered more reserves and new technologies unlocked even more oil

resources. Today the world has more proven oil reserves 1 than ever before (Fig. 1.2). In the period 1980 to

2007, proven reserves doubled [2]. One of the main reasons that proven reserves have doubled over the

last 30 years or so is that oil exploration increased and production technologies improved.

Figure 1.1: Energy consumption in the U.S. by source as a function of time [2].

According to recent reports [8], demand will surpass supply by 2015 if the world’s oil depletion rate

remains at its 2010 value. Besides being limited resources, fossil fuels pose serious problems of pollution.

Hence, it is certain that the need for new sources of energy to replace fossil fuels will certainly become a

critical problem in the near future.
1Proven reserves are those reserves claimed to have a reasonable certainty (normally at least 90 % confidence) of being recoverable

under existing economic and political conditions, with existing technology.

1



Figure 1.2: Proved oil reserves versus production [2].

1.2 Why Fusion

Nuclear fusion is a promising source of energy to respond to the increasing world energy demand. In

the Sun and other stars, fusion reactions occur and are the main source of energy. Here, some nuclei

recombine and become less massive. The final mass (mf ) is less than the initial mass (mi), where the

”missing mass” is converted into energy by the well known Einstein’s equation

E = (mi −mf )c2, (1.1)

2



where c is the speed of light.

The fusion process is safe, although it produces radioactive waste, similarly to fission reactions.

However, fusion waste is much more manageable than fission, where instead of half-lives of 103 − 105

years [9], we can have (with an appropriate choice of materials) half-lives of dozens of years [10]. The

Deuterium source for the fusion process Deuterium-Tritium can easily be extracted from sea water, which

implies that the fuel source for fusion is, in principle, inexhaustible. Tritium is bred from the reaction

of Lithium with neutrons inside the reactor and the known sources of Lithium are sufficiently large to

last thousands of years (see [11]). Also, see [12] for a special issue on ITER physics basics, specially the

question of tritium breeding blankets and their feasibility.

Major accidents cannot take place since fusion reactors must be continuously fueled, so it can be

stopped easily. There is no doubt that this process works, since it is what mainly powers the Sun and the

stars, where gravitational energy holds the fusion protons together against the de-confining tendency

due to thermal expansion and uncontrolled fusion reactions have been achieved on Earth, such as

H-bombs [13]. Nowadays, the biggest challenge is to achieve fusion in a controlled manner (namely

plasma confinement), which requires a detailed study on plasma physics. To confine a plasma, we need to

maintain it in a stable equilibrium state, where the loss of particles and heat in the reactor must be slow

enough for it to be self-sustained.

1.3 The Dynamics of Magnetically Confined Plasmas

Dwight R. Nicholson starts his book noting that ”A plasma is a gas of charged particles, in which the

potential energy of a typical particle due to its nearest neighbor is much smaller than its kinetic energy.

The plasma state is the fourth state of matter” [14].

As the temperature of a material is raised, its state changes from solid to liquid and then to gas.

Elevating it further, a high percentage of the gas atoms are ionized and a high temperature ”gaseous”

state is achieved. Here, the charge numbers of ions and electrons are nearly the same and, macroscopically,

charge neutrality is maintained.

When ions and electrons move, they interact through the Coulomb force. This, in turn, has the form

F ∝ 1

r2
, (1.2)

where r is the distance between the particles. Therefore, charged particles interact via long range forces.

This leads to collective motion, characteristic of the plasma state.

The Nobel prize winning American chemist Irvin Langmuir first used this term (plasma) to describe

an ionized gas in 1927. He was reminded of the way blood plasma carries red and white corpuscles much

like an electrified fluid carries electrons and ions. Along with his colleague Lewi Tonks, Langmuir was

investigating Tungsten-filament light bulbs.

Although nowadays there are several different machines with different geometries and configurations,

in this thesis we will focus on a specific device designed to achieve nuclear fusion – a tokamak (Fig. 1.3).

This is a low pressure gas discharge tube bent into a closed circular shape with a strong toroidal magnetic

3



Figure 1.3: Schematic representation of a tokamak and the corresponding magnetic field lines (figure
taken from [3]). The plasma is depicted in blue; the red annuli are the toroidal field coils.

field, Bφ, and a weaker poloidal field, Bθ, containing a high temperature plasma within the torus. This

sort of containment is not easy to achieve. Charged particles cannot move easily through strong magnetic

fields. If the fields are closed into embedded surfaces, then charged particles (like Deuterium and

Tritium ions) trapped in this way and colliding with enough energy to overcome their repulsive Coulomb

potential, will fuse and liberate energy through the law (1.1). External electric currents flowing in coils

that stream around the torus generate the toroidal field. There is a much weaker superimposed poloidal

field, Bθ, generated by an electric current, Ip, flowing toroidally in the plasma.

In a plasma consisting of Deuterium, or Deuterium mixed with Tritium, the fusion reactions

D2 +D2 →

 He3 + n1 + 3.27 MeV,

T 3 +H1 + 4.03 MeV,

and

D2 +He3 → He4 +H1 + 18.3 MeV,

D2 + T 3 → He4 + n1 + 17.6 MeV,

will occur frequently if the ion temperature, Ti, and the ion number density, ni, are large enough. In a

fusion reactor, these high values of Ti and ni must be maintained for long enough time for the energy

released by fusion to more than balance the energy losses due to radiation, conduction, convection and

neutron flux.

There is an important statement, due to John D. Lawson in 1955. He decided, as a young engineer, to

work out how ambitious the task of achieving fusion is. He formulated the so-called Lawson’s Criteria,

calculating the requirements for more energy to be created than is put in, and came up with a dependence

4



on three quantities - temperature (T ), density (n) and confinement time (τ ).

The confinement time is defined as the time that energy remains in the plasma before escaping. This

parameter is crucial for fusion research and, from one microsecond in Lawson’s time, it has improved

to about one second in JET [15]. Lawson’s Criteria says that in order to achieve ignition in a D-T

(Deuterium-Tritium) plasma, the following inequality must hold [16]:

τnT > 5× 1021s m−3 keV. (1.3)

This is derived from the definition of confinement time as the energy content of the plasma divided

by the power loss (τ = W/Ploss) where the thermal energy of a plasma can be defined as the integral over

volume

W =

∫
3

2
k (neTe + (nD + nT )Ti) dV, (1.4)

where k is the Boltzmann’s constant, ne and Te are the electron density and temperature, respectively, nD

and nT are the ion densities of Deuterium and Tritium and Ti is their temperature. With the assumption

that the Deuterium and Tritium densities are equal and the temperatures are roughly the same, we obtain

W

V
' 3nekT, (1.5)

where V is the volume. The volumetric equation for a hot plasma cloud (assuming that it has a Gaussian

energy curve), which dictates the released energy [16] provides the number of fusions f per volume per

time

f = nDnT 〈σv〉 =
n2
e

4
〈σv〉, (1.6)

where v is the relative velocity between the two species, σ is the fusion cross-section, the brackets are an

average over the Maxwellian velocity distribution and we used nD = nT = ne/2. To keep ignition, the

energy produced within the plasma must be greater or equal than the one that leaves the plasma, leaving

the balance

fEfp ≥ Ploss, (1.7)

where Efp the energy of the charged fusion products. Substituting f and Ploss, we obtain the standard

definition of the Lawson Criterion, without the smaller contribution of the neutron emissions to plasma

heating

neτT ≥
12kT 2

Efp〈σv〉
. (1.8)

The minimum value of the RHS of (1.8) is reached for D-T near the temperature of 14 keV and the

average 〈σv〉 in this region is approximately 1.1× 10−24m3/s (where T is in keV) leading to (1.3).

One of the major challenges today that keeps us from achieving Lawson’s criteria is the extremely
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complex interaction between the plasma and the device. This requires a profound study of the plasma-

surface interaction and the plasma boundary (due to high energy and particle fluxes on surfaces). This is

defined as the outermost closed magnetic flux surface contained in the device (in this case a tokamak).

The shape of this boundary is often referred to as plasma shape. Unfortunately, this cannot be measured in

a direct manner, but it is needed for control issues. Luckily, using indirect measurements of the magnetic

field, one can estimate this shape in real time. Once the magnetic flux distribution is known, it is possible

to reconstruct the plasma boundary.

Man-made plasmas almost always involve interaction with solid state materials, for example, elec-

trodes or the walls containing vessel. This Plasma-Suface Interaction (PSI) often has profound effects

on both the plasma and the material contained in the vessel. After all, they determine the boundary

conditions in which the plasma basic properties are strongly dependent. At the interface between the

solid and the plasma a thin net-charge layer called ”Debye sheath” develops spontaneously [17]. The

Debye sheath was first described also by Langmuir in 1923. As he wrote in [18] ”electrons are repelled

from the negative electrode, while positive ions are drawn towards it. Around each negative electrode

there is thus a sheath of finite thickness containing only positive ions and neutral atoms”.

From the sheath to the wall, charged particles collide with a solid surface which tends to stick the

needed time to recombine. Having a finite probability of back scattering from a solid surface, ions pick up

electrons from the surface and tend to return as neutrals. An equilibrium can be achieved, since electrons

also stick to solid surfaces. Thus, a solid surface acts as a plasma charge sink.

Ionization of neutral particles by electron impact occurs throughout the tokamak. Resulting electron-

ion pairs will then fall to the walls and stick to the surface until they recombine, forming neutrals that are

released back to the plasma and ionized again. In this manner, a recycling steady-state is established,

resulting in a constant plasma density.

1.4 The Scrape-Off Layer, SOL

There is a special device that controls the particle movement inside a tokamak, preventing the plasma

touching the wall and controlling the plasma-solid interaction. This is usually done by a limiter or a

divertor, where the magnetic field lines are not closed any more. The different types of limiters and

divertors can be found in Fig. 1.4.

The Debye sheath is formed on the sides of the limiter due to the motion of particles to those locations.

This way, the plasma boundary does not extend all the way to the walls due to fast loss of particles to the

limiter, giving the particle a small time to diffuse beyond the limiter inner radius a, limiting the radius of

the plasma column to a slightly larger value than a.

A key role is played by the Last Closed (magnetic) Flux Surface (LCFS). This is the last flux surface

that goes outwards from the main plasma and does not touch a solid surface. In a surface on a region

inside the LCFS magnetic lines are closed, while those further out are open. The region radially outboard

of the LCFS is called the SOL (see Fig. 1.5).

For the purpose of this work, we focus on the poloidal limiter, a circular annular plate of inner radius
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Figure 1.4: Diferent examples of poloidal and toroidal limiters [4].

r = aplasma and outer radius r = awall (Fig. 1.4 (iii)). This limiter can be present at one or more toroidal

locations. The typical parallel-to-B distance that a particle has to travel in the SOL before striking a

poloidal limiter is

Lz '
2πR

N
, (1.9)

where N is the number of poloidal limiters. This will be used as our connection length Lz .
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Figure 1.5: For the limiter configuration, the last closed magnetic flux surface, LCFS, is defined by the
leading edge of the limiter. A JET-size plasma is shown (figure taken from [4]).

1.5 ISTTOK Geometry and the GBS code

1.5.1 ISTTOK

ISTTOK is a large aspect ratio tokamak with a circular cross-section with a poloidal (graphite) limiter

([19], [20]). The main goal of this thesis is to modify and apply the GBS code described in the next section

in order to simulate the SOL environment of this device and compare with the existing results ([21], [22]

and [23]).

Major Radius (R) 46 cm
Minor Radius (a) 8.5 cm
Toroidal magnetic field (BT ) 0.5 Tesla
Plasma current (Ip) 4-6 kA
Electron temperature (Te) 20 eV
Density (n) 0.4 - 1.2 ×1018 m−3

Table 1.1: Geometrical parameters of ISTTOK around the limiter [1].

With a typical toroidal magnetic field BT of 0.5 T and a poloidal magnetic field of typically Bp ' 3%

of BT , the field lines are disposed in helical shape. The safety factor q, when an integer, is the number of

toroidal transits required for the total magnetic field B to make one poloidal transit. We can calculate
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Figure 1.6: General view of ISTTOK [5].
.

approximately for a large aspect ratio (Ra � 1) circular cross-section tokamak (such as ISTTOK) the safety

factor

q(a) ' aBT
RBp

, as ε =
a

R
→ 0, (1.10)

where estimating from Ampère’s law the poloidal magnetic field and relating it with the plasma current

provides

Bθ(a) ' µ0Ip
2πa

. (1.11)

In terms of edge diagnostics, four multi-pin probe systems have been installed at the same toroidal

location at different poloidal positions in the tokamak ISTTOK edge plasma equally divided in the

poloidal plane. Each probe system consists of five tungsten cylindrical pins with a diameter of 0.75 mm

and an exposed length of 2.5 mm. These small free standing pins minimize the plasma perturbation. The

inner-most pins are located at a minor radius of r = 7.5 cm (r/a ' 0.9) and the other two pins 5 mm

further out (r/a ' 0.95). The detail edge diagnostics and experimental results are expressed in [1].

1.5.2 GBS Code

In this work we simulate ISTTOK SOL dynamics with the GBS code. This is based on the drift-reduced

Braginskii equations and models the SOL plasma turbulence with proper boundary conditions derived

from sheath dynamics [24]. It has been developed with the goal of simulating plasma SOL turbulence

by evolving the full profiles of the various quantities with no separation between perturbations and

equilibrium. These simulations can explore the self-consistent evolution and structure of the plasma
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profiles in the presence of plasma density and heat input from the core of the fusion machine, cross-field

transport driven by several plasma instabilities (interchange or drift wave instability, for example) and

parallel losses at the sheaths, where the magnetic field lines terminate on the walls.

We use the GBS code to describe the evolution of several quantities, namely the plasma density,

electric potential, electron and ion parallel velocities and electron and ion temperatures in the SOL.

At first, the code was conceived to describe the 2D plasma dynamics in basic plasma physics devices

[25] and then ported to more complex configurations incorporating a three dimensional model. It has

been validated against experiments such as the TORPEX device ([26] and [27]), which is particularly

suitable for the code validation since it is equipped with a large number of diagnostics. In this thesis, we

developed the code to incorporate a poloidal limiter, such as the geometrical configuration of ISTTOK,

and considered electrostatic turbulence in configurations with circular magnetic flux surfaces.

1.6 Scope and Outline of the Thesis

In this thesis, we shall investigate the turbulent regimes in ISTTOK’s SOL. In order to define the main

turbulent modes in this region, GBS simulations are presented, as well as linear investigations and

comparison with experimental results.

The issue of plasma blob dynamics is not directly adressed. These are structures of enhanced plasma

density relative to the background plasma [28], and they are measured near the edge of magnetized

laboratory plasmas such as tokamaks, stellarators, simple magnetized tori and linear devices. In recent

years, their study has substantially increased (see e. g. [29], [30] and [31]), as blob dynamics influence

important mechanisms such as wall recycling and strength of heat and particle fluxes to the divertor

or first wall. Blob dynamics is also influenced by SOL turbulence and the deeper understanding of

edge turbulence in the plasma can improve our understanding of blob behavior in ISTTOK and other

tokamaks.

In Chap. 2 we derive the set of equations used throughout the thesis and solved by GBS (adimension-

alized drift-reduced Braginskii equations) together with the proper boundary and initial conditions. We

also present a brief description of the numerical implementation of the code and ISTTOK’s geometry.

In Chap. 3 the set of equations is linearized and the linear solver is described together with its

numerical implementation. The main linear instabilities in the cold ion limit are described: they are

Ballooning Modes (BM) and Drift Waves (DW). In order to accurately describe these modes, we assess

at the influence of each parameter: electron mass, resistivity and plasma βe, in order identify a inertial,

resistive and ideal branch of BM or inertial and resistive branch of DW, studying its growth rate as a

function of the main SOL parameters. The gradient removal hypothesis is also presented; this suggests that

turbulence is non-linearly saturated when the radial gradient of the background plasma pressure is of

the same order of the radial gradient of the pressure fluctuations [32].

In Chap. 4 we present the simulation results, identifying the non-linear SOL turbulent regimes,

comparing with the linear simulation and experimental results. An analysis is done on the dependence of

these modes with SOL operational parameters, namely q, magnetic shear ŝ, resistivity ν, ion to electron
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temperature ratio τ and the electromagnetic factor βe (formal definitions in the next chapter).

In Chap. 5 the main results are described together with some possible improvements and future

developments of this work.
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2
Description of the Model and the GBS code

2.1 Braginskii Equations

In order to model the turbulence in the edge of a tokamak, one should define a set of reduced equations

coherent with the specified regime. To allow the use of a fluid description, the collisionality needs to be

high enough so that the plasma is close to thermodynamical equilibrium. This is usually true in the edge,

where the temperatures are much lower than in the core because the distribution function becomes a

Maxwellian in a time of the order of the collision time τ [33], which is proportional to T 3/2 (implying

d/dt� 1/τ ). Despite the need of a model as complete as possible, there is a numerical complexity limit

that nowadays computers can handle. At a kinetic level, the most complete description is given by the

Boltzmann’s equation. A widely used model to describe SOL turbulence is the drift reduced model based

on the Braginskii equations [33]. In appendix A we present a detailed derivation of those fluid equations

and a discussion of the appropriate closure scheme. The system of equations for each species s is given by

dns
dt

+ ns∇.Vs = 0, (2.1)

msns
dVs

dt
+∇ps +∇.πs − esns

(
E +

Vs

c
×B

)
= Rs, (2.2)

3

2

dps
dt

+ ps∇.Vs + πsij∇iVsj +∇.qs = Qs. (2.3)

Here, d
dt = ∂

∂t + Vs.∇, ps = nsTs is the plasma pressure, πs the viscosity tensor, E and B the electric

and magnetic fields respectively, qs the heat flux density, Qs the energy flux density, Vs the flow velocity

of each species s and Rs the density of momentum per unit time exchanged due to collision with other

species.

The closure is done through the assumption that the plasma is collisional and is immersed in a strong

magnetic field [34], which implies

ωe,iτe,i � 1, (2.4)
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with ωe,i = qB
me,ic

the Langmuir frequency and τe,i the electron/ion collision times,

τe =
3
√
meT

3/2
e

4
√

2πλe4Z2ne
, τi =

3
√
miT

3/2
i

4
√

2πλe4Z2ni
, (2.5)

and λ = 24− ln
(√

n
Te

)
is the Coulomb logarithm. In ISTTOK we have ωeτe ' 123.

In his paper [33], Braginskii expresses R, π, q and Q as proportional to V, n, T and their gradients.

The proportionality coefficients are called transport coefficients which are calculated under the hypothesis

(2.4) and calculated to arbitrary order in

ε =
ρ

L
� 1 (2.6)

where ρ is the Larmor radius and L is the macroscopic length-scale. The first order moment of the

collision operator R ≡ Re ≡ −Ri can be written as a sum of a frictional and a thermal contribution

R = Ru + RT

Ru = ne

(
j‖

σ‖
+

j⊥
σ⊥

)
, j‖,⊥ = ene(V‖,⊥i −V‖,⊥e), σ⊥ =

e2neτe
me

σ‖ = 1.96σ⊥, (2.7)

Rt = −0.71ne∇‖Te −
3

2

ne
ωeτe

b×∇⊥Te, b =
B

B
, ∇‖ = b · ∇. (2.8)

where σ⊥ and σ‖ are the perpendicular and parallel conductivities, respectively.

In the same manner, the electron heat flux can be described as a sum of two contributions qe = qeu+qet .

The ion heat flux qi in (2.11) is shown neglecting terms of order wiτi.

qeu = 0.71neTeu‖ +
3

2

neTe
ωeτe

b× u, (2.9)

qet = −χe‖∇‖Te − χ
e
⊥∇⊥Te −

5

2

cneTe
eB

b×∇Te, (2.10)

qi = −χi‖∇‖Ti − χ
i
⊥∇⊥Ti +

5

2

cniTi
ZeB

b×∇Ti. (2.11)

with u = Ve −Vi and the thermal condutivities (both parallel and perpendicular for electrons and ions)

are given by ([33])

χe‖ = 3.16
neTeτe
me

, χe⊥ = 4.66
neTe
meω2

eτe
, (2.12)

χi‖ = 3.9
niTiτi
mi

, χi⊥ = 2
niTi
miω2

i τi
. (2.13)

In the limit ωτ � 1 and aligning the z axis with the magnetic field, we obtain the stress tensor π
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πxx = −η0

2
(Wxx +Wyy)− η1

2
(Wxx −Wyy)− η3Wxy, (2.14)

πyy = −η0

2
(Wxx +Wyy)− η1

2
(Wxx −Wyy) + η3Wxy, (2.15)

πzz = −η0Wzz, (2.16)

πxy = πyx = −η1Wxy +
ηe
2

(Wxx −Wyy) , (2.17)

πxz = πzx = −η2Wxz − η4Wyz, (2.18)

πyz = πzy = −η2Wyz − η4Wxz, (2.19)

ηe0 = 0.73neTeτe, ηe1 = 0.51
neTe
ω2
eτe

, ηe2 = 4ηe1, (2.20)

ηe3 = −neTe
2ωe

, ηe4 = 2ηe3, ηi0 = 0.96niTiτi, (2.21)

ηi1 =
3

10

niTi
ω2
i τi

, ηi2 = 4ηi1, ηe3 =
niTi
2ωi

, ηi4 = 2ηi3. (2.22)

where the rate-of-strain tensor W is defined as

Wα,β ≡
∂Vα
∂xβ

+
∂Vβ
∂xα

− 2

3
δα,β∇ ·V. (2.23)

It is interesting to note that in the absence of magnetic field we have π = −η0W . To conclude, the heat

generation Q can be written as

Qe = −Re · u−Qi, Qi =
3mene
miτe

(Te − Ti) . (2.24)

The electron heat generation Qe is composed of a Joule heating term due to friction with ions (Re · u)

and a term due to the difference in temperature between them. The Joule heating term in Qi is neglected,

being ≈ me/mi smaller than the Joule heating term due to friction (Re.u).

These are the so-called Braginskii equations. Since they are rigorously justified only for high colli-

sionality, which implies τe and τi small. This is justified since they are proportional to T 3/2
e and T 3/2

i and

these are low at the edge of the fusion plasma. Braginskii equations also describe dynamics at a wide

range of timescales which can be very disparate from the dynamics of interest.

To better grasp which magnitudes we are referring to, it is known that in ISTTOK the ratio of

temperatures from the core to the edge has a maximum of
(
Tecore
Teedge

)3/2

' 45 and in densities ncore
nedge

' 8 [1].

The value of τe in ISTTOK’s edge is approximately τe ≈ 2.56402× 10−6 s. In terms of time variations in

the SOL, they are characterized by a scale much slower than the ion gyromotion and a spatial scale of the

order of the Larmor radius at the sound speed cs
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ρs =
cs
ωi
, c2s =

Te
mi

. (2.25)

It is worthy to note that making use of the smallness of the mass ratio me
mi

to approximate Vi '

V + O
(
me
mi

)
, Ve ' V − δ j

ne + O
(
me
mi

)
with δ ≡ ρ

L and equation terms in order δ in the Braginskii

equations leads to the simpler model that combines Navier-Stokes and Maxwell’s equations known as

MHD (Magnetohydrodynamics).

2.2 Drift Reduced Model

The dynamics present in Braginskii’s equation presented above range from electron cyclotron frequency

wce ' 1011s−1 up to the confinement time scale of order 1 s [6]. In order to eliminate fast time scale

variations in our system, a drift reduced model is employed using (following [6])

∂

∂t
≈ VE×B .∇ ≈

ρ2
s

L2
⊥
ωi � ωi, (2.26)

where, typically, at the region of interest ρs is much smaller than the typical equilibrium scale length L⊥.

On ISTTOK, ρs/Lp ' 0.09. The E×B velocity is

VE×B = − c

B
∇φ× b, (2.27)

where in general E = −∇φ − 1
c
∂A
∂t . Thanks to fact that the plasma turbulence takes place on a much

bigger spatial scale than the charge unbalancing, namely that

ρs � λD, where λD ≡
√

Te
2πe2n

is the Debye Length, (2.28)

we can assume a quasi neutral regime n ≡ ni = ne. Also embedded in the drift ordering is the distinction

between dynamics parallel and perpendicular to the magnetic field Vs = V‖sb+V⊥, with the turbulence

essentially aligned with the field line, implying

|∇‖| � |∇⊥|. (2.29)

Assuming that the viscous terms are small and performing the parallel and perpendicular splitting,

we obtain

V⊥e = VE×B + Vde, V⊥i = VE×B + Vdi + Vpol, (2.30)

Vde = −b×∇pec
enB

, Vdi =
b×∇pic
enB

, (2.31)

with Vde/Vdi the electron/ion diamagnetic drift velocity. In terms of ρi
L⊥

ordering, the diamagnetic drift

velocity together with the E×B drift constitute the zeroth order approximation to V⊥i (V⊥i0). The first
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order term is the polarization velocity

Vpol =
b

ωi
× dV⊥i0

dt
+

[
a×

(
∇× b

ωi

)
.∇
]
V⊥i0 +

[
a×

(
Gκ− ∇G

3

)]

+

{
a

pi
×∇⊥

[
2pi
ωi
∇. (b×V⊥i0)

]
− a

pi
∇⊥

(
pi

2ωi
∇⊥.V⊥i0

)}
,

a =
v2
Ti

ωi
b, vTi =

√
Ti
mi

, G = −η0

(
2∇‖V‖ − κ.V − ∇.V

3

)
,

(2.32)

with the definition of field curvature κ ≡ (b.∇)b and G the stress function. In order to derive (2.32) the

transfer momentum from electrons to ions Ri has been neglected, the perpendicular component of the

frictional and thermal forces in Re has been neglected and the stress tensor π is the sum of a viscous part

and a Finite Larmor Radius (FLR) part (where ρi
L⊥
6= 0) which take the form (neglecting η1, η2 and η4

related terms in favor of η3)

πvis =

(
bb− I

3

)
G,

∇.πFLR = −mn(Vd.∇)V + p

[(
∇× b

ω

)
.∇
]
V

+∇⊥
( p

2ω
∇.V

)
+ b×∇

( p

2ω
∇⊥.V

)
.

(2.33)

For a more detailed derivation we refer the reader to [6]. We conclude with the divergence of the

polarization drift that can be written as

∇. (nVpol) = ∇⊥
nc

Bωi

d

dt

(
E⊥ −

∇⊥pi
en

)
+

(
b

3miωi
× κ.∇

)
G. (2.34)

2.3 Vorticity and Continuity equations

In analogy with fluid dynamics where the vorticity is defined as the curl of the flow velocity, we define

the vorticity as

ω = ∇2
⊥φ. (2.35)

The continuity equation for each species s with the diamagnetic drift velocity and E × B velocity

present in the perpendicular direction for both ions and electrons and the polarization drift added to the

ion perpendicular velocity reads

∂ns
∂t

+∇.
[
n
(
V⊥s + V‖s

)]
= 0. (2.36)

Subtracting both equations and imposing the quasi-neutrality condition we obtain the vorticity
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equation (equivalent to∇.j = 0 implying that the displacement current is negligible)

− nc

Bωi

d

dt

(
ω +

∇2
⊥pi
en

)
+

b

3miωi
× κ.∇Gi +∇‖

j‖

e
+∇.n(Vdi −Vde) = 0, (2.37)

where the Boussinesq approximation (2.38) has been applied.

∇⊥
nc

Bωi

d

dt

(
E⊥ −

∇⊥pi
en

)
' − nc

Bωi

d

dt

(
ω +

∇2
⊥pi
en

)
. (2.38)

For the role of this approximation in the SOL region we refer the reader to [31].

2.4 Semi-Electrostatic Limit

In both the transverse and longitudinal direction of the magnetic field lines Braginskii equations contain

both shear and compressional Alfvén waves, which are driven by magnetic field line tension. The

compressional Alfvén wave is several orders of magnitude faster than the typical turbulent fluctuations

(which typically occur at time scales of order 10−6 s), so this dynamics must be removed. For example in

ISTTOK’s SOL, the Alfvén velocity VA ' 107 m/s and wi ' 104s−1.

Choosing a vector potential A purely parallel to the equilibrium magnetic field, being ψ the poloidal

flux function,

δA = −ψb, (2.39)

achieves this goal. Assuming that

β ≡ 8π
P

B2
� 1, (2.40)

and noting that typically, the scale lengths in the parallel direction are much larger than the ones in the

perpendicular direction, we can write the perturbed magnetic field as [24]

δB = −∇× (ψb) ' b×∇⊥ψ = δB⊥. (2.41)

In this manner, we can write the electric field and the Ampere’s law as

E = −∇φ+
1

c

∂ψ

∂t
b, (2.42)

∇2
⊥ψ =

4π

c
j‖. (2.43)

Also, there is a contribution due to the magnetic perturbations in the parallel derivative

∇‖ = b · ∇+
b

B
×∇⊥ · ∇. (2.44)
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2.5 Parallel Motion

Projecting the momentum equations (2.2) along the parallel direction and retaining the parallel component

of Re yields

me

deV‖e
dt

= −
∇‖pe
n
− 2

3
∇‖Ge + e∇‖φ−

e

c

∂ψ

∂t
+
ej‖

σ‖
− 0.71∇‖Te, (2.45)

with the electron total time derivative de

dt ≡
∂
∂t +

(
VE×B + V‖e

)
.∇ and considering that the FLR part

of the stress tensor is perpendicular to the magnetic field yielding ∇.πe = 2
3∇‖Ge. The diamagnetic

contribution has canceled out by the first term in the∇.πFLRe equation.

The evolution of the ion parallel velocity is obtained adding the parallel components of the electron

and ion momentum equations neglecting the πe tensor since both FLR and viscous contributions are

smaller than their ion counterpart by a factor of me and
√
me respectively

mi

dV‖i

dt
= −∇p

n
− pi∇×

b

wi
.∇V‖i −

2

3
∇‖Gi. (2.46)

2.6 Temperature Equations

For the electron temperature, we neglect the frictional part of heating, the second term in the thermal

force (2.8) and the electron-ion heat transfer in the heat generation Qe and the term proportional to χe⊥
and the second term in (2.9) in the heat flux term qe since it is smaller than χe‖ by a factor ωeτe. For the ion

temperature, we neglect the electron-ion heat transfer (Qi = 0) and the terms proportional to χi⊥ and to

χi‖ in the heat flux qi since χi⊥ is smaller than χi‖ by a factor ωiτi and the latter is smaller than χe‖ by a

factor
√

me
mi

.

Through (2.47) and with the simplifications above, the equation for both the electron and ion tempera-

ture is

3

2
n

(
d

dt
+ Vde.∇

)
Te + pe∇.(V⊥e + V‖e)−

5c

2e
∇.
(
peb

B
×∇Te

)

−0.71Te∇‖j‖ −∇.
(
χe‖∇‖Te

)
= 0,

3

2
n

(
d

dt
+ Vdi.∇

)
Ti + pi∇.(V⊥i + V‖i) +

5c

2e
∇.
(
pib

B
×∇Ti

)
= 0.

(2.47)

In order to evaluate the ion equation in (2.47) numerically, the term ∇.Vpol has to be evaluated. The

term pi∇.
(
V⊥i + V‖i

)
may be eliminated through the ion continuity equation

pi∇.
(
V⊥i + V‖i

)
= −Ti

(
dn

dt
+ Vdi.∇n

)
= −Ti

dn

dt
+ nVdi.∇Ti, (2.48)

bearing in mind that Vdi.∇pi = 0. We can also rewrite
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5

2

c

e
∇.pi

(
b

B
×∇Ti

)
= −5

2
nVdi.∇Ti +

5

2

c

e

(
∇× b

B

)
.∇Ti. (2.49)

In the total derivative, the term Vpol.∇ is much smaller than the other contributions, being therefore

neglected (but retaining as before the term proportional to∇.Vpol). Substituting back everything, the ion

equation that can be used numerically is given by

3n

2

dTi
dt

+ Ti
[
n∇.

(
VE×B + V‖e

)
+∇. (nVde)

]
+

5

2

c

e
pi

(
∇× b

B

)
.∇Ti = 0. (2.50)

2.7 GBS Model

We have described so far the set of drift-reduced equations describing the dynamics of plasma density,

vorticity, electron and ion parallel velocities and electron and ion temperatures. In order to summarize

them in a straightforward numerical form we introduce the curvature operator C, the Poisson brackets

operator, the adimensionalized resistivity ν (2.52), the ion to electron temperature ratio τ , the reference

ion sound speed cs0 and the plasma parameter β.

C(f) =
B

2

(
∇× b

B

)
· ∇f, [φ, f ] = b · (∇φ×∇f), (2.51)

ν =
e2nR

miσ‖cs0
, cs0 =

√
Te0
mi

, τ =
Ti0
Te0

, β =
n0Te0
B2

8π

. (2.52)

With these definitions, we can express [24]

∇.(nVde) = − 2c

eB
C(pe) (2.53)

∇.(nVE×B) =
c

B
[φ, n] +

2cn

B
C(φ), (2.54)

Gi = −3η0i

[
2

3
∇‖V‖i +

C(φ)

3
+

c

enB
C(pi)

]
, (2.55)

Ge = −3η0e

[
2

3
∇‖V‖e +

C(φ)

3
+

c

enB
C(pe)

]
, (2.56)

∇.(nV‖e) = n∇‖V‖e + V‖e∇‖n, (2.57)

where in the last equation ∇.b has been neglected (a direct consequence of neglecting finite aspect ratio

effects).

In the model, diffusion operators D are introduced for numerical purposes. Acting on an arbitrary

field A, in general terms the diffusion operator takes the form (2.58). Its full form depends on the quantity

A. As an example, for the electron temperature term, the diffusion coefficient D‖Te is derived from the
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term ∇.
(
χ‖e∇‖Te

)
supposing χ‖e constant.

∂A (r, t)

∂t
= ∇ · (DA (A, r)∇A (r, t)) . (2.58)

With the definitions above, the system of equations are solved in a normalized form by GBS with

the standard gyro-Bohm normalization (with ρs and cs). We normalize n to the reference density n0, Te

and Ti to the reference temperatures Te0 and Ti0, φ to Te0
e , V‖e and V‖i to cs0 (and cs to cs0), ψ to βcmics0

2e

and time t to R
cs0

where R is the major radius. Lengths in the perpendicular direction are normalized to

ρs0 = cs0
wi

and in the parallel direction to R.

With the coupling∇2
⊥ψ = n(V‖i − V‖e) and∇2

⊥φ = w and with the notation

[φ, ]A ≡ [φ,A], DAA ≡ DA(A), (2.59)

the complete adimensionalized system of equations with source terms Sα is given by the system (2.60)-

(2.65) where Ω = ω + τ∇2
⊥Ti and U‖e = me

mi
V‖e + βe

2 ψ (for a more detailed derivation see [35]).

∂n

∂t
=− R

Bρs0
[φ, n]−∇‖

(
nV‖e

)
+

2n

B

[
C(Te − φ) +

Te
n
C(n)

]
, (2.60)

∂Ω

∂t
=− R

Bρs0
[φ,Ω]− V‖i∇‖Ω +B2∇‖j‖ +

B

3n
C(Gi)

+B2j‖∇‖ log(n) + 2BC(Te + τTi) + 2BC(n)
Te + τTi

n
,

(2.61)

∂U‖e

∂t
=− R

Bρs0

me

mi

(
[φ, V‖e] + V‖e∇‖V‖e

)
+∇‖φ−

(
1.71∇‖ +∇‖ log(n)

)
Te −

2

3
∇‖Ge + νj‖ , (2.62)

∂V‖i

∂t
=− R

Bρs0
[φ, V‖i]− V‖i∇‖V‖i −

2

3
∇‖Gi −

(
∇‖ +∇‖ log(n)

)
(Te + τTi) , (2.63)

∂Te
∂t

=− R

Bρs0
[φ, Te]− V‖e∇‖Te −

2

3
Te∇‖V‖e +

2

3
0.71Te

(
∇‖ +∇‖ log(n)

)
j‖

+
4

3

Te
B

(
7

2
C(Te) +

Te
n
C(n)− C(φ)

)
,

(2.64)

∂Ti
∂t

=− R

Bρs0
[φ, Ti]− V‖i∇‖Ti +

4

3

T 2
e

B

C(n)

n

+
4

3

Te
B
C

(
Te + τ

5

2
Ti − φ

)
+

2

3
Ti
(
j‖∇‖ log(n)−∇‖V‖e

)
,

(2.65)
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2.8 ISTTOK Geometry

The system of equations (2.60) to (2.65) is stated for a general layout of equilibrium magnetic field.

The configuration of interest is ISTTOK’s geometry, which uses a poloidal limiter. Due to this fact, the

magnetic field lines in the poloidal plane have geometry represented in Fig. 2.1. This asserts the poloidal

symmetry present in ISTTOK’s geometry and, therefore, we should also expect this symmetry in the

simulation results (as opposed to a toroidal limiter that provides toroidal symmetry). We also consider

an s− α geometry [36] (where operators are computed in the large aspect ratio limit ε = a/R→ 0) and

with the poloidal limiter located at z = 0.

A right handed coordinate system [y, x, z] is used, where x is the flux coordinate and corresponds

to the radial direction (since we work in a circular magnetic flux surface), z is a coordinate parallel to

the total magnetic field B and y is the coordinate perpendicular to both x and z. In the large aspect ratio

limit, the plane (x, y) coincides with the poloidal plane, which implies y = aθ, where 0 < θ < 2π is the

poloidal angle and 0 < z < 2π.

Figure 2.1: Representation of the magnetic field line geometry at ISTTOK with a q = 8, where θ is the
poloidal angle and φ the toroidal one (in radians).

.

In this geometry, the previously defined operators take the form (in a general form of ŝ 6= 0)
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[f, g] = ∂yf∂xg − ∂xf∂yg, (2.66)

C(f) = sin θ∂xf +

(
sin θ

yŝ

a
+ cos θ

)
∂yf, (2.67)

∇2
⊥f = ∂2

xf +
2yŝ

a
∂2
x,yf +

[
1 +

(
yŝ

a

)2
]
∂2
yf, (2.68)

∇‖f = ∂zf +
Rβ

2ρs0
[ψ, f ]. (2.69)

In this system, the pitch of the field line varies radially in the presence of magnetic shear. This effect is

studied in chapter 3. In table 2.1 we state the code input parameters for ISTTOK in GBS units (lengths

normalized to ρs).

Major Radius (R) 503.7
Minor Radius (a) 93.08
SOLwidth 16.43
β 2.577 ×10−5

Ly 584.8
ν 1.137 ×10−3

me/mi 0.00055
q 8

Table 2.1: Code input parameters for ISTTOK in GBS units [1].

2.9 Numerical Implementation

The domain is discretized along the x, y and z direction, with the grid points defined as

xi =

(
i− 1

2

)
∆x, i = 0, ..., Nx + 1, ∆x =

Lx

Nx
, (2.70)

yj =

(
j − 1

2

)
∆y, i = 0, ..., Ny + 1, ∆y =

Ly

Ny
, (2.71)

zk =


(
k − 1

2

)
∆z, i = 0, ..., Nz + 1, ∆z = Lz

Nz , for A = V‖e, V‖i,

k∆z, i = 0, ..., Nz, for A = n, Te, Ti, w.

(2.72)

There are Nx, Ny , Nz intervals in the (x, y, z) direction, numbered from 1 to Nx, Ny , Nz . Each physical

quantity A is written Ai,j,k ≡ A(xi, yj , zk) with each index running from the intervals defined from 2.70

to 2.72. The physical domain runs from 1 to Nxyz but one ghost cell is introduced to the left and right of

each domain to account for the width of the finite difference scheme.

In the x and y directions, the grid points are located at the middle of the interval. There is formally no
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z derivative in the equations but it appears in the parallel gradient operator. For numerical reasons, the

parallel gradient terms are computed at the middle of the interval zk+ 1
2

, being shifted by half an interval

to the left for V‖e and V‖i.

In order to reduce the computational cost of the simulations, we take advantage of the fact that

turbulence is mostly aligned in the direction parallel to the field. For this purpose, we choose Ny and Nz

in such a way that the discretization points fall on the field lines, i.e. we impose

∆j =
Ny
Nzq

∈ N, (2.73)

which allows the use of a low resolution in the toroidal direction. The parallel derivative can then be

approximated as

(b.∇)Ai,j,k '
1

2∆z
(Ai,j+∆j,k −Ai,j−∆j,k) . (2.74)

In the x and y directions a standard centered finite difference scheme is used

∂A

∂x

∣∣∣∣
i,j,k

' 1

2∆x
(Ai+1,j,k −Ai−1,j,k) , (2.75)

except the Poisson brackets, which are discretized according to the Arakawa scheme [37]. A second

order centered finite difference scheme is used on the Laplacian operator and a fourth order Runge-Kutta

scheme is used for the time stepping. In order to ensure the positivity of n, Te and Ti, Eqs. (2.60) to (2.65)

are rewritten in terms of θn = log n, te = log Te and ti = log Ti.

The parallelization scheme is done with a standard MPI domain decomposition. The total number

of processes is Np ≡ NPxNPz , where the physical domain in x and z is divided as equally as possible

into NPx and NPz parts. With the addition of one ghost cell to the left and to the right, each array

representing the physical quantity A(x, y, z) will have a size of
(
Nx
NPx

+ 2
)

(Ny + 2)
(
Nz
NPz

+ 2
)

elements

in each process. For more details we refer to [24].

2.10 Boundary and Initial Conditions

Our system of equations is solved in a periodic domain in the poloidal direction, but there is a finite

extension of the domain in the toroidal direction due to the presence of the poloidal limiter and in the

radial direction. In the toroidal direction the plasma touches the conducting limiter and spontaneously

generates a thin layer contiguous to the wall, the so-called sheath (see Fig. 2.2), where quasi-neutrality

and the drift approximations are broken. As me � mi electrons tend to reach the wall at a higher rate

than the ions and in order to prevent an electron loss to the wall larger than the ion loss, the plasma

naturally builds up a potential drop between the bulk plasma and the wall.

An extensive derivation of the boundary conditions at the magnetic presheath entrance is presented

in [38] for τ = 0 and in [35] for τ > 0. GBS allows the choice between Neumann and Dirichlet boundary

conditions for all the fields but for the parallel electron and ion velocities, Bohm’s boundary conditions
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are implemented. These are derived using a detailed kinetic treatment of the electron dynamics in the

sheath region (see [4]).

Figure 2.2: Schematic of the variation of plasma pressure, electric potential, plasma velocity and
ion/electron densities in the plasma between two semi-infinite planes (figure taken from [4]).

.

So at the sheath, particularly at z = 0 and at z = 2π (at the limiter), we use

V‖es = ±
√
Tee

Λ− φ
Te , (2.76)

V‖is = ±
√
T e

√
1 + τ

Ti
Te
. (2.77)

Since most of the particles are lost at the limiter preventing them from reaching the vessel wall, the

conditions applied to the outer edge of the simulation domain do not influence the turbulence dynamics
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significantly. To mimic the plasma outflow from the core, a particle and heat source mimic the plasma

outflow from the core, being located at a finite distance from the inner boundary of the domain. The

region between the source and the inner boundary of the domain is not taken into account for turbulence

analysis.

Each quantity is then initialized as A = A0 + Ã(y, x, z), where A0 has a constant value and Ã is a

random field whose amplitude can be chosen. For V‖e and V‖i a profile varying linearly between the two

values of each V‖es and V‖is is used. The source term for the fields A = n, Te, Ti is defined as

Source = Afe
− (x−xs)2

σ2s , (2.78)

where xs represents the radial position of the source, Af its strength and σs its width. With each new

simulation, a quasi-stationary state is reached after a transient phase, in which the plasma, generated by

the source and transported by turbulence, is eventually removed from the system by losses at the vessel

walls. Our analysis is focused primarily in the quasi-stationary state.
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3
Analysis of Turbulence Regimes in ISTTOK’s SOL

3.1 Linearized System and Linear Solver

We linearize the system of Eqs. (2.60) to (2.65) assuming that the equilibrium n and T can be described as

f = f00

(
1 + x

Lf

)
where f00 represents the equilibrium value and looking for solutions of the form eγt

where γ is the linear growth rate of the mode [39].

With Ω = ω + τ∇2
⊥Ti and U‖e = me

mi
V‖e + βe

2 ψ the linear system is given by

γ
n

n00
= +

2

B
C

(
Te +

Te00

n00
n− φ

)
+

R

Ln

∂φ

∂y
−∇‖V‖e , (3.1)

γΩ = + 2B

[
C (Te) +

Te00

n00
C(n)

]
+ 2Bτ

[
C(Ti) +

Ti00

n00
C(n)

]
+

B2

Te00
∇‖j‖ , (3.2)

γU‖e =−∇‖
(

1.71Te −
Te00

n00
n

)
+∇‖φ+ νj‖ , (3.3)

γV‖i =−∇‖ (Te + τTi)−
Te00 + τTi00

n00
∇‖n , (3.4)

γ
Te
Te00

= +
R

LTe

∂φ

∂y
+

4

3B
C

(
7

2
Te +

Te00

n00
n− φ

)
+

2

3
0.71∇‖j‖ −

2

3
∇‖V‖e , (3.5)

γ
Ti
Ti00

= +
4

3B
C

(
Te +

Te00

n00
n− φ

)
+

R

LTi

∂φ

∂y
− 10τ

3B
C (Ti) . (3.6)

The main parameters characterizing the SOL in this linear drift-reduced model are Ln, the typical

gradient scale length ηe,i = Ln
LTe,i

, the ratio between density and temperature gradient length, together

with the plasma βe, parallel resistivity ν, magnetic shear ŝ, the tokamak major and minor radii R and a

and the safety factor q. Despite the apparent simplicity of the model, it allows us to capture the most

important properties of DW (Drift Waves) and BM (Ballooning Modes) (major instabilities described in

section 3.2). It is important to note that modes other than the ones referred here could become unstable
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in the edge and SOL regions of tokamak plasmas such as peeling-ballooning modes, external kinks

and sheath modes ([40] and [41]) but, following past studies carried out with low-frequency non-linear

electromagnetic models (both fluid and gyrofluid) in agreement with experimental results ([42], [43]

and [44]), DW and BM typically determine the plasma turbulent dynamics in the SOL. These studies,

however, do not clarify their relative importance.

In this chapter, we shall evaluate the relative importance of DW and BM for the geometry considered

and how the different SOL operational parameters change the character of the turbulent modes. Following

non-local, linear studies of BM and DW (see [45]), the scale length in the radial direction is larger than

in the poloidal direction, i.e., kykr '
√
kyLp � 1. Therefore, we ignore the radial mode dependence and

assume ky � kr. Using a field line following approach, each perturbed quantity is Fourier decomposed

in the y direction and z is the parallel coordinate with 0 < z < 2π (Lz is given by the distance between

the poloidal limiters, i. e., one field line turn)

fky (y, z, t) = fky (z)eikyy+γt, (3.7)

∇‖fky (y, z, t) =
∂fky (z)

∂z
eikyy+γt. (3.8)

The ∂y operator is substituted by iky and the parallel derivative is calculated directly on the discretized

parallel direction z with a finite difference scheme. Therefore, the curvature operator and the Laplacian

operator become [39]

C = −2iky

[
cos

z

q
+
z

q
ŝ sin

z

q

]
, (3.9)

∇2
⊥ = −k2

⊥ = −k2
y

[
1 +

(
ŝ
z

q
− πŝ

)2
]
. (3.10)

This reduces our set of linear equations to a one-dimensional eigenvalue problem in the z direction

for γ which is solved by the linear code. It discretizes z = [0, Lz] with Nz points with a grid distance

between each point ∆z ≡ zi+1 − zi = Lz
Nz−1 and zi = (i− 1)∆y for the quantities n, φ, Te and Ti. As in

GBS, we compute a different grid for ψ and V‖i having Nz − 1 points with the same grid distance ∆z and

yz = (i− 1/2)∆y. We denote the first as the unshifted grid and the last as the shifted grid. We refer the

reader to [39] for a detailed description of the numerics.

Introducing the vector

x =
[
n1, ..., nNz , ψ1, ..., ψNz−1

, V‖i,1, ..., V‖i,Nz−1
, Te,1, ..., Te,Nz , Ti,1, ..., Ti,Nz

]
(3.11)

the resulting set of equations can be written as

L
∂

∂t
x = Mx. (3.12)
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The eigenvalue problem is solved through an iterative solver that integrates the time evolution of

(3.12) by discretizing it with a numerical scheme of the form

xt+∆t − xt
∆t

= (1−Θ)L−1Mxt + ΘL−1Mxt+∆t, (3.13)

where Θ = 0 leads to a fully explicit scheme, while Θ 6= 0 leads to an implicit scheme. The growth rate

is calculated by comparing the solution at two different time steps. In our work, we shall use Θ = 0.5

(which is the only value that guarantees 2nd order accuracy).

It is important to derive the expression for the parallel derivative in terms of the poloidal and toroidal

direction since we will be using it throughout the document. In Fig. 2.1 we can see that the magnetic field

lines have a small “pitch” angle (that we shall call ε) that has the value

ε = arctan

(
a

qR

)
, (3.14)

due to the fact that after one turn of the field line, it moves a distance 2πa
q in the poloidal direction and

2πR in the toroidal direction, with a
qR the slope of the straight lines of the magnetic field in the θ − φ

plane. Calling zφ the toroidal direction, y the poloidal direction and z the parallel one, we can write

zφ = z cos ε, y = z sin ε. (3.15)

Using the chain rule, the parallel derivative can be written as

∇‖ =
∂

∂z
=
∂zφ
∂z

∂

∂zφ
+
∂y

∂z

∂

∂y
= cos ε

∂

∂zφ
+ sin ε

∂

∂y
. (3.16)

With simple geometrical arguments, and taking into account that we are in a large aspect ratio limit

(ε� 1), we can write

cos ε =
R2√

R2 +
(
a
q

)2
' 1, (3.17)

sin ε =
a/q√

R2 +
(
a
q

)2
' a

qR
. (3.18)

(3.19)

Therefore, we can write

∂z =
a

qR
∂y + ∂zφ . (3.20)
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3.2 Linear SOL Instabilities

A number of instabilities are described by the system of Eqs. (3.1) - (3.6). We shall focus on the DW and

BM, whose linear properties have been extensively studied (see for example [43], [46], [42] and [47]).

3.2.1 Drift Waves

DW arise primarily due to the E×B convection of the density profile [6]. A basic example can be seen

through the electron/ion continuity equation (2.36) retaining only the term v = vE×B = c
B∂yφ ex and

assuming quasi-neutrality with n = n0 + ñ

∂n

∂t
= −vE×B · ∇n0 = −vden0

∂

∂y

eφ

Te
= −vdin0

∂

∂y

eφ

Ti
,

vde,i =
cTe,i
eB

1

Ln
, Ln ≡

n

∂xn
.

(3.21)

In the isothermal limit we have in first order the Boltzmann relation

0 = −∇Pe,i − n0e∇E ⇔
ñ

n0
=

eφ

Te,i
, (3.22)

which combined with (3.24) yields

∂ñ

∂t
= −vde,i

∂ñ

∂y
, (3.23)

which is a wave propagating perpendicular to the magnetic field and to the density gradient (which is

called the electron/ion diamagnetic drift direction).

We now turn to the drift wave instability. Within the linear model described in (3.1) - (3.6), we linearize

the perpendicular gradients, neglect the curvature (ballooning) terms and the coupling with sound waves

by considering k‖ � γ (therefore neglecting V‖i dynamics). This yields the DW model [39]

γn = iky
R

Ln
φ− k2

⊥∇‖ψ, (3.24)

−k2
⊥γφ = −k2

⊥∇‖ψ, (3.25)

γψ
β

2
+
me

mi
γk2
⊥ψ = k2

⊥νψ +∇‖ (φ− n− 1.71Te) + ik⊥ (1 + 1.71ηe)
β

2

R

Ln
ψ, (3.26)

γTe = ikyηe
R

Ln
φ− k2

⊥
2

3
1.71∇‖ψ. (3.27)

We consider the two branches of the drift wave instability in the cold ion limit: the resistive and the

inertial one. The resistive branch of DW (Resistive Drift Wave (RDW)) is characterized by the presence

of finite resistivity which brakes the adiabaticity. It is obtained from (3.24)-(3.27) by neglecting electron
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inertia
(
me
mi
→ 0

)
and electromagnetic effects (β → 0). In the inertial branch (Inertial Drift Wave (InDW))

the adiabaticity is broken by the presence of finite electron mass, being retrieved from (3.24)-(3.27) by

neglecting resistivity (ν → 0) and electromagnetic effects [39].

The one dimensional resulting equation for each branch is given by (3.28) with the substitutions

bellow. We substitute z̃ by z̄ = z
√
νR/Ln, γ̄ = γLn/R, k2

⊥ = k2
y

[
1 + (z̄αRŝ)

2
]

and αR =
√
Ln/(q

√
νR)

for RDW and z̃ by ẑ = zR
√
me/(Ln

√
mi), k2

⊥ = k2
y

[
1 + (ẑαI ŝ)

2
]

and αI = Ln
√
mi/(qR

√
me) for InDW.

γ̄k2
⊥φ =

(
1− iky

1 + 1.71ηe
γ̄

)
∂2φ

∂z̃2
+ 2.94

∂2(k2
⊥φ)

∂z̃2
. (3.28)

3.2.2 Ballooning Modes

BMs are curvature driven modes which together with DW are perceived to be the most important drives

of plasma turbulence in the SOL region. As in the previous section, we can analyze a simple case to gain

some insight on the basic physical mechanism. Decomposing the diamagnetic drifts defined in (2.31) and

approximating∇× b
B '

2
Bb× κ which holds for∇×B = 0 at negligible local current density, we find

vdi = −2
cTi
eB

b× κ− c

en
∇× pib

B
, (3.29)

vde = +2
cTe
eB

b× κ +
c

en
∇× peb

B
. (3.30)

The term ± c
en∇×

pe,ib
B describes a gyro motion of the particles which does not displace the guiding

center, being therefore irrelevant to the final equations [6]. Particularly, it appears only in the form

∇ · nvde,i, which does not contribute. The terms (3.29) and (3.30) are the sum of the gradient B drift and

the centrifugal drift, leading to particle motion perpendicular to the magnetic field and to the field line

curvature κ. With different signs, ions and electrons drift into opposite directions creating an electric

field and a space charge (see Fig. 3.1).

At the high-field side (poloidal angle where B is stronger),∇n and κ point into opposite directions

leading to a stable configuration. At the low-field side, the magnetic drift shifts the ions upwards and the

electrons downwards, where a density gradient in the direction parallel to the particle motion causes

a charge separation and a consequent electric field. This field leads to an E ×B drift, amplifying the

initial perturbation and therefore completing the instability mechanism. Essentially, the instability must

be localized within the unfavourable curvature region (ballooning mode) or the curvature must be

destabilizing on average (interchange mode).

As ballooning modes are driven by an interchange character and the presence of a magnetic field

line curvature and plasma pressure gradients, we neglect the coupling with sound waves, plasma

compressibility, parallel flows in the density and temperature equations and the ∇‖ (n+ 1.71Te) term in

Ohm’s law, yielding the system (3.31)-(3.34).
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Figure 3.1: Rosenbluth-Longmire picture of curvature driven instabilities with an initial perturbation
of the density profile at the low-field side of the torus. The curvature drift shifts electrons and ions into
opposite directions and the resulting space charge generates an electric field leading to an E×B drift
that amplifies the initial perturbation (figure taken from [6]).

.

γn = iky
R

Ln
φ, (3.31)

−k2
⊥γφ = 2C (n+ Te)− k2

⊥∇‖ψ, (3.32)

γψ
β

2
+
me

mi
γk2
⊥ψ = −k2

⊥νψ +∇‖φ+ ik⊥ (1 + 1.71ηe)
β

2

R

Ln
ψ, (3.33)

γTe = ikyηe
R

Ln
φ. (3.34)

Here, we consider the 3 branches associated with BM: the resistive branch (Resistive Ballooning

Mode (RBM)) is retrieved from Eqs. (3.31)-(3.34) by neglecting electron inertia and electromagnetic effects,

the inertial one (Inertial Ballooning Mode (InBM)) by neglecting resistivity and electromagnetic effects

and the ideal (Ideal Ballooning Mode (IdBM)) neglecting electron inertia and resistivity.

The one dimensional resulting equation for each branch is given by (3.35) for RBM, (3.36) for InBM

and (3.37) for IdBM. It was found in [39] that the maximum growth rate for all cases is γmax
B =

√
2R/Lp,

where it was also performed an intensive study on the parameter space of the linear instabilities of the

drift-reduced Braginskii equations. In (3.35) we substitute z̄ = z/q, γ̄ = γ/γmax
B and σR = 1/(γmax

B k2
yq

2ν),

in (3.36) σIn =
√
mi/(γ

max
B kyq

√
me) and in (3.37) αMHD = −q2β(1 + ηe)R/Ln.

γ̄φ
[
1 + (z̄ŝ)2

]
= σR

∂2φ

∂z̄2
+
C

γ̄
φ, (3.35)

γ̄φ
[
1 + (z̄ŝ)2

]
=
σ2
In

γ̄

∂2φ

∂z̄2
+
C

γ̄
φ, (3.36)
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γ̄φ
[
1 + (z̄ŝ)2

]
=

1 + (z̄ŝ)2

αMHDγ̄

∂2φ

∂z̄2
+
C

γ̄
φ. (3.37)

3.3 Linear Instability Analysis

We now study the relative importance of each instability branch described in Chap. 3: RBM, InBM, RDW

and InDW. As these simulations are computationally cheap (compared with the non-linear ones), we

can perform a scan in each input parameter and determine its growth linear rate and typical pressure

gradient length.

Each instability branch provides a different estimate for Lp. The BM branches provide the ballooning

character seen before of Lp(LFS) > Lp(HFS), while the DW branches provide a constant Lp through all

poloidal angles. This can be seen quantitatively in Fig. 3.2, where the estimates were performed with

ISTTOK-like parameters. We see that the branches that generate the greatest value of Lp are InBM at the

LFS and InDW at the HFS. Performing a scan in q, ν, ŝ, τ and βe we shall determine if this constitutes a

trend and therefore the turbulence is characteristic of the geometry itself or if the parameters change the

fundamental properties of the fluctuations and equilibrium of the plasma profile. The introduction of a

finite βe also leads to the appearance of the Ideal Ballooning Mode (see Chap. 3), whose importance will

be assessed.
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Figure 3.2: Poloidal variation of Lp for the 4 instability branches provided by the gradient removal
hypothesis for ISTTOK-like parameters.

For the scan analysis we shall look at the growth rate itself, running the linear solver after the

determination of Lp with the gradient removal hypothesis, so we can follow previous linear studies in the

SOL (such as [39]). It has been seen in [39] that magnetic shear can play a major role in the determination

of the growth rate of each instability branch. Since this parameter was not present in the non-linear
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simulations, we present for each growth rate a scan in ŝ and a scan in the poloidal variable y such as for

the Lp analysis, so each y and ŝ we determine which branch provides the greatest growth rate γ.
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Figure 3.3: Representation of the branch that provides the greatest linear growth rate as a function of the
poloidal angle and magnetic shear for the same input parameters inserted in the non-linear simulations.

In Fig. 3.3 we perform this analysis for the ISTTOK-like parameters used in the non-linear simulations.

This shows the predominance of the InBM at the LFS region and the InDW at the HFS with no variation

as the magnetic shear increases from 0 to 2.5. From Fig. 3.4 we see that, except for values of ν < 10−3, the

instability branches that are predicted to play a major role at ISTTOK’s SOL remain the same through

a scan in τ , q, ν and βe. It is determined that as τ increases, there is an extension of the InDW region,

while for different βe and q the results stay the same. As ν drops to a value closer to me/mi, the RBM

starts to play a role but only in a very small region, negligible for all values of ŝ except ŝ = 1.5. It was

also seen that the absolute value of Lp and γ does not alter significantly with ŝ. For the case of ν < 10−3,

the RBM starts to dominate at the LFS. This shows a strong dependence on this parameter, as even for

slight changes on ν the dominant instabilities are different. A non-linear simulation with lower values of

resistivity is needed in order to fully assess its influence.

Following [39], the parameter that describes the damping of the mode due to the resistive parallel

spread (relevant in the RBM) is σR (3.38) and the one that describes the damping due to the inertial

spread is σIn (3.38). It is also shown that the growth rate increases as σR and σIn decreases. If we look at

the ratio σR/σIn =
√
me/mi/(νky) for ISTTOK (using the typical value of ky = 0.2 obtained from GBS)

we get the value σR/σIn ' 100 which points to the dominance of the inertial branch (the same analysis

may be applied to the drift wave resistive and inertial branch). Note that in ISTTOK νISTTOK > me/mi.
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Figure 3.4: Each figure shows which branch provides the greatest linear growth rate as a function of the
poloidal angle and magnetic shear. With a scan on each variable τ, q, ν and βe the inertial DW and BM
are the major predicted branches at play at ISTTOK’s SOL.

σR =

√
Lp
2R

1

k2
yν
, σIn =

√
Lpmi

2Rme

1

ky
(3.38)

3.4 Gradient Removal Mechanism

There are several mechanisms that have been proposed to explain the saturation of linear modes during

the non-linear phase ([48], [49], [47]). In [32], it has been shown that the growth of the Kelvin-Helmholtz

instability and the gradient removal mechanism play a major role in the SOL through the analysis of the

drift-reduced Braginskii equations (as done in this thesis). The latter dictates that the saturation of the

linear mode is due to the non-linear flattening of the driving plasma gradients. Analytical estimates and

numerical simulations [32] show that the gradient removal saturation mechanism is the one at play in the

SOL when
√
kyLp < 3 (the KH-stable parameter regime). This mechanism provides an estimation of Lp

as a function of the SOL operational parameters that has a quantitative good agreement with simulation

and experimental results [35].

It is useful to briefly derive this model starting from the GBS equations, namely the continuity and

electron temperature eqs. (2.60) and (2.64). Ignoring the curvature and diffusion terms (which are small

compared to the E×B convection and parallel terms) in the SOL we have
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∂p

∂t
= −R[φ, p]−

∂(pV‖e)

∂z
, (3.39)

[φ, p] = ∇ · Γ, Γ = p

(
∂φ

∂y
ex −

∂φ

∂x
ey

)
, (3.40)

where Γ is the adimensionalized pressure flux. Eq. (3.40) can be time averaged during the quasi-steady

state phase (dropping times of order ≤ 1/ω where ω is the characteristic turbulence frequency) and along

the toroidal and poloidal directions. All quantities are written as f = f̄ + f̃ , with f̄ the averaged and f̃

the fluctuating component. After time and toroidal averaging we obtain

∂Γx
∂x

+
Γy
2πa

∣∣∣∣
limiter

= −
pV‖e

2πR

∣∣∣∣∣
limiter

, (3.41)

where Γy
∣∣
limiter and pV‖e

∣∣
limiter are the pressure flux in the poloidal direction and the parallel losses

averaged over time and in the toroidal direction, evaluated at the limiter plates. Estimating pV‖e ' p̄c̄s
and neglecting Γy � Γx (since the characteristic lengths in the x direction are much shorter than in y) we

obtain

∂Γx
∂x
' − p̄c̄s

2πR
=⇒ Γx

Lp
≈ p̄c̄s

R
. (3.42)

This is the balance between the radial flux and the parallel losses, where Lp = Γx/
∂Γx
∂x . Splitting the

averaged component and the turbulent part as Γx = p∂φ∂y + p̃∂φ̃∂y , we can neglect the averaged component

approximating the radial flux as

Γx ' p̃
∂φ̃

∂y
' kyφ̃p̃, (3.43)

with ky the typical wavelength of the mode. Turbulent saturation of the linearly unstable modes is

achieved when the radial gradient of the perturbed pressure becomes comparable to the radial gradient

of the background pressure

dp̃

dx
≈ dp

dx
, (3.44)

which can also be written as kxp̃ ≈ p
Lp

, where kx is the typical radial wave number of the instability. With

this estimation, we can write

p̃

p
≈ 1

Lpkx
. (3.45)

From the leading term in the pressure equation ∂tp ∼ R[φ, p], we derive γp̃ ≈ Rpkyφ̃/Lp which

translates to

φ̃ ≈ p̃

p

Lp
R

γ

ky
. (3.46)
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Following non-local linear theory as outlined in [50] and [45], for DW and BM we estimate kx as

kx ≈

√
ky
Lp
. (3.47)

Plugging (3.45), (3.46) and (3.47) in (3.42) and (3.43), and using c̄s = cs0 = 1 in normalized units, an

estimate for Lp is obtained

Lp ≈
γ

ky
, (3.48)

which for a non-normalized units yields Lp ≈ R
cs

γ
ky

. The linear code provides the growth rate γ for a

given value of ky and, through a set of values (γi, kyi), we seek the value that yields largest transport

choosing the maximum of the ratio γ/ky [51]. As Lp also depends on the different SOL operational

parameters, we obtain a value of Lp that satisfies Eq. (3.48) through Muller’s method [52] maintaining

all other parameters fixed (see algorithm in appendix B). As in [32], the gradient removal hypothesis

assumes the inequality
√
kyLp < 3 (the KH stable regime) which will be tested throughout the non-linear

and linear simulations. We point that this is a “quasi-linear” model, where we have estimated the size of

the non-linearity and included it in the calculation.

3.5 Non-Linear Analysis Techniques

3.5.1 Lp Variation

With the definition Lp ≡ |∂xpp |, after averaging over y and z, we seek the decay-like behavior

p(x) = p0e
− x
Lp . (3.49)

Within ISTTOK’s geometry, the presence of a poloidal limiter implies not only a poloidal symmetry in

our system but that the HFS is located at the poloidal location θ = 0 and the LFS at θ = π. As the plasma

is better confined in the HFS it should in principle drive little turbulence across the magnetic field lines

and the reverse is true for the LFS. As Lp is a measure of this transport across the magnetic field lines,

it should increase in the LFS and decrease at the HFS while being poloidally periodic (which in turn

provides a “Gaussian-like” figure for Lp(y)).

These arguments leads us to pursue a ballooning character in the LFS where Lp(π) is greater than

Lp(0) = Lp(2π) in the HFS where we expect a drift-wave character with a much smaller radial variation.

This analysis on Lp is divided in three tests - first obtain an absolute estimate for Lp through a toroidal

and poloidal averaging, then estimate the poloidal variation of this value and hence obtaining Lp(y) and

finally estimate the toroidal variation and obtain Lp(z) at the HFS and LFS.

First, to test the hypothesis in (3.49) we position ourselves in the SOL region choosing a radial domain

between the plasma source from the core and the wall, perform a fit in the radial direction of the toroidal

and poloidal average of the plasma pressure (which also applies for Ln and LT ) to the expression (3.49).

We then look at the variation of Lp(y) performing a fit at each poloidal location of the toroidal average of
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the plasma pressure. Finally we perform a fit for each toroidal direction but looking poloidally at the

HFS and LFS (i.e. Lp(z, y = 0) and Lp(z, y = π)).

These results are then compared with the Lp obtained from the linear code together with the gradient

removal estimate (which in GBS units reads Lp ' γ
ky

) and the experimental value.

3.5.2 Cross-Coherence

We apply a “cross-coherence” technique which asserts the DW character of the domain of interest. Since

in this case electrons are close to adiabaticity, the amplitudes of φ and n are correlated. To see this, we

look to the linear Ohm’s law in the isothermal limit

γ

(
me

mi
V‖e +

βe
2
ψ

)
− νj‖ = ∇‖

(
φ− Te00

n00
n

)
. (3.50)

In this case, the adiabatic braking terms have the parameters βe, ν and me
mi

, which in the HFS are small

comparing with the RHS of (3.50) , where the parallel gradients become dominant. Therefore, we can

estimate that φ ' Te0
n00

n+ constant and should obtain a clearly correlated plot of φ(n).

At a fixed radial location and at a half distance in the toroidal direction the φ and n fluctuations are

normalized to their standard deviation. We then evaluate the probability of finding both fluctuations at a

certain ordered pair of amplitudes.

3.5.3 Phase Shift

To assert the BM character, we look at the phase shift −π ≤ δ < π between φ and n fluctuations. The

value of δ can be estimated through the linear vorticity equation for cold ions. Neglecting the parallel

derivative of the parallel current (which represents the coupling with DW) we obtain

γ∇2
⊥φ = 2B

Te00

n00
C(n). (3.51)

Therefore in the case of BM the φ and n fluctuations are not correlated but retain a phase shift of δ = π
2

(as C(f) ∝ ∂yf ). The value of δ is calculated at a fixed radial and toroidal position and choosing a small

domain at the HFS and other at the LFS, we perform an Fast Fourier Transform (FFT) along y on those

fluctuations. From the FFT we compute the phase shift corresponding to each ky and we bin them as a

function of wavenumber on both domains, with the proper weight given by the power spectral density

of φ and n fluctuations.

3.5.4 Power Spectrum

Experimentally, the different modes discussed in this section have been observed on ISTTOK ([1] and

[21]). The HFS and LFS separation has been measured in detail and can be compared with the non-linear

and linear results. One of the experimental diagnostics is the frequency spectrum of the floating potential

Vf , a measured quantity by ISTTOK’s diagnostics [1]
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Vf = V − 3Te. (3.52)

As typically observed in the boundary plasma of fusion devices [53], it is found on ISTTOK (Fig. 3.5)

that the lowest frequency part of the spectrum (f < 30 – 50 kHz) is nearly independent of the frequency

and the high frequency part (f > 80 – 100 kHz) shows a power-like decay with indices close to −2 both

at LFS and HFS. The transition region shows a slope of −1. We can then compare the power indices and

the overall behavior FFT(Vf (HFS))<FFT(Vf (LFS)) at the high-frequency with the GBS simulation results.

Figure 3.5: Experimental power-spectrum results performed at ISTTOK (figure taken from [1]). The blue
line represents the first low-frequency region, the green line the transition region with a slope of -1 and
the yellow one the high frequency region with a slope of -2.
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4
Simulation Results and Analysis

In this chapter we shall present the results of the non-linear simulations of SOL turbulence using the GBS

code described in Chap. 2, for which typical simulations can be found in [24]. We present the results that

support our methodology to determine the SOL turbulent regimes and compare with the linear code

results, which determines the relative importance of the four predicted instability regimes: RBM, InBM,

IdBM, RDW and InDW described in Chap. 3. Finally, we perform a comparison between simulation and

experiment results.

Within the non-linear simulations, we seek which turbulent regimes play the major role at the LFS and

HFS comparing the phase shift and cross-correlation between φ and n fluctuations, obtaining the poloidal

variation of Lp in order to compare with the gradient removal hypothesis and estimate ηe from GBS

simulations and experimental results. The simulations were performed with ISTTOK-like parameters

and with no DW and BM coupling.

4.1 GBS Snapshots and Analysis

Comparing the SOL parameters that determine the different instability branches in ISTTOK, β has a

value of ' 10−5, whereas ν ' 10−3 and me/mi ' 5 × 10−4. The small influence of β and ŝ (magnetic

shear) is confirmed with the linear code in the next sections. For this reason, GBS simulations were

performed using ISTTOK-like parameters without electromagnetic effects and without magnetic shear.

The simulations are performed with the typical ISTTOK’s edge value of q = 8 for cold and hot ions,

containing (Nx = 64, Ny = 512, Nz = 32) grid points in the (x, y, z) directions. The plasma and heat

source are located at x = 15 with σs = 2.5. Further input parameters are provided in table 2.1. For

a typical simulation, we use 32 cores through the course of 1 week reaching ' 1000 GBS time units

(approximately 5000 CPU hours).

In Fig. 4.1 we represent a typical time trace of one point of the electric potential φ/φ0 at a fixed

location (the typical steady state duration at ISTTOK varies from 1 to several ms). There are differences

on the absolute value of φ at different locations, specially when comparing the LFS with the HFS, but the

temporal variation does not alter significantly.

In Fig. 4.2 we represent a typical density snapshot for cold ions in a poloidal plane (as a function of x
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Figure 4.1: Time trace of the electric potential from the beginning of the simulation with cold ions to a
quasi-steady state at a fixed location of the HFS – (x, y, z) = (20, 1, 16), and LFS – (x, y, z) = (20, 256, 16).
The typical duration of the quasi-steady state phase at ISTTOK varies from 1 to several ms.

and y) at halfway between the limiter (z = Lz
2 ) in a turbulent state and the same quantity averaged over

the quasi-steady period (same time period as in Fig. 4.1). The ring shown starts at the radial position

of the source and ends at the wall. There is an observed radial fall-off that depends on y, namely that

Lp(LFS) > Lp(HFS). These statements will be quantified in section 4.2.

In Fig. 4.3 we look at the ion and electron parallel velocities in the toroidal plane (as a function of

y and z) for a cold ion simulation. Since electrons possess small inertia, the averaging is not as clear as

in the ion parallel velocity, where we see that ions start at z = 0 with velocity equal to −cs0 (-1 in our

normalization) and end at z = 2π with cs0. This region represents the limiter and the value is consistent

with the Bohm sheath condition, where it expresses a limiter value of ±cs0eΛ− φ
Te in Eq. (2.77). This is

why the electron velocity has limiting values beyond 1 and -1 at the boundaries (it also has a dependence

on φ and Te).

Simulations were also performed with no DW coupling, where we neglect the diamagnetic term in

Ohm’s law (∇‖ (n+ 1.71Te)), and with no BM coupling, where the interchange terms in the vorticity

equation are turned off. In Fig. 4.4 we see these two simulation results, averaging the density profile over

the simulation period. We note that turning off the interchange drive the ballooning character observed

before (where Lp(LFS) > Lp(HFS)) is lost.

Simulations with a different value of q = 4, 6, 10, 12 and with τ = 1, 2 were also performed with no

fundamental difference in the results detailed in this chapter.
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Figure 4.2: Typical snapshot of GBS simulations at a poloidal plane halfway between the limiter. (z =
Nz/2) Plots show contours of density at a specific time slice - 20 ms (left) and averaged over the steady-
state period - between 20 and 22.5 ms (right).

Figure 4.3: Typical snapshot of GBS simulations at a toroidal plane at x = 20 (out of 64 x grid points).
Plots show contours of electron (left) and ion (right) parallel velocity averaged over the steady-state
period - between 20 and 22.5 ms.

Figure 4.4: Snapshot of GBS simulations with no DW (left) and no BM (right) coupling at a poloidal
plane halfway between the limiter. Plots show contours of density averaged over the steady-state period -
between 20 and 22.5 ms.
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4.2 Typical Pressure Gradient Length

In order to test the dependence

p(x) = p0 e
−x/Lp , (4.1)

we average the total pressure over y and z and plot the resulting profile in Fig. 4.5. We identify the

exponential decay character right after the source at x = 15 until approximately x = 50. This will be the

domain where the Lp test will be performed (red dashed lines). After that region the decay possesses a

different decay parameter, which is more closely related with the radial boundary conditions than with

the turbulence itself.

Figure 4.5: Fit to the expression (4.1) for the resulting pressure profile toroidally and poloidally averaged.
The logarithmic vertical axes allows the visual separation of the characteristic exponential decays right
after the source at x = 15 and before the wall. The fit results in a Lp = 1.1 cm with a SOL width of 4.6 cm.
The green crosses indicate values excluded from the fit.

The fit on Fig. 4.5 provides an Lp = 1.1 cm, less than a fourth of the whole domain, with a value of

the coefficient of determination R2 = 0.9937
(
R2 = 1−

∑
i(yi−fi)

2∑
i(yi−ȳ)2

)
. The starting and end position where

chosen so that R2 would be the maximum and Lp would not deviate too much. With this result, we can

look at the value of Lp for a specific toroidal and poloidal region. In order to describe the fit at a 95 %

confidence value we include the error bars that characterize this region.

Performing solely a poloidal average, we look at Lp(z) in Fig. 4.6 including the the error bars provided

from the fit. A variation of less than 5 % through the whole torus is obtained. As expected the values of

z = 0 and z = 2π are disconnected by the presence of the limiter at this region.

Finally, we look at the variation of Lp(y) with the poloidal angle in Fig. 4.7. The situation is quite
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Figure 4.6: Toroidal variation of Lp from the fit to non-linear simulations. The vertical axes shows Lp in
GBS units, where 1 GBS unit = 0.91 mm.

different, with a periodic domain that provides a variation of over 50 %. As we saw in the previous

chapter, one of the addressed instabilities (BM) has a different character at the LFS (center of the plot)

and at the HFS (starting and ending region of the plot) while DW remain with the same characteristics

through y.

There is an asymmetry present in the figure for Lp(y), which is thought to caused by the presence

of finite kx within the non-linear simulations (recall that in the linear code we assumed ky � kx). At

the LFS the interchange instability is dominant, arising mainly from curvature terms. Linearizing the

curvature operator, retaining kx terms and Taylor expanding the sin and cos terms to second order we

obtain for ŝ = 0

C ∼ −ky
2

(
θ − kx

ky

)2

+
2k2
y + k2

x

2ky
. (4.2)

This expression contains the term kx/ky that can cause the observed asymmetry (relevant at values of

θ near 0) and shows a shift to the right as seen on Fig. 4.7.

The SOL width in the non-linear simulations is of 4.6 cm (50 GBS units) which is 3 cm larger than

ISTTOK but, based on simulations with a SOL realistic width of 1.5 cm, Lp scales with the SOL width

within the non-linear simulations. These simulations with smaller domain require a much greater value

of the diffusion coefficient, which alters significantly the results of the non-linear tests.

We can estimate Lp through the gradient removal theory and compare this prediction with the non-

linear simulations. First we note that all the non-linear simulations satisfy the inequality
√
kyLp < 3,

since we obtain (with minor fluctuations) a value of ky = 0.2 and even for the maximum Lp = 16 at

the LFS one has
√
kyLp ∼ 1.8 and therefore they belong to the regime where the gradient removal

mechanism is responsible for the turbulence saturation.
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Figure 4.7: Poloidal variation of Lp from the fit to non-linear simulations (blue) and from the gradient
removal hypothesis (red). The vertical axes shows Lp in GBS units, where 1 GBS unit = 0.91 mm.

In Fig. 4.7 we show the resulting poloidal variation of Lp provided by the gradient removal hypothesis

(together with the linear code). We see a periodic and symmetric figure, with the same behavior as in the

non-linear simulations (increasing at the LFS and decreasing at the HFS). As we have seen, the ballooning

instability could be the one responsible for this variation at the LFS due to its different character along y.

The quantitative value of Lp is also relevant for the analysis and it shows good agreement with a

minimum of Lp = 7 instead of 7.5 and a maximum of Lp =21 instead of 16. The disagreement at the LFS

has two main reasons: the quality of the fit to the non-linear simulations, where we dropped the points

near to the wall therefore decreasing Lp; the boundary conditions applied on the linear code, where a

mix of Neumann and Dirichlet conditions were implemented. To assess this, we looked at the value

of νs =
∣∣∣ 1
φ
∂φ
∂z

∣∣∣
wall

on the non-linear simulations obtaining νs ∼ 400, which is the value used within the

linear code. If solely Dirichlet or Neumann boundary conditions were present we would expect a value

of νs = 0 or νs →∞ respectively. The fact that νs is finite and does not approach infinity shows that the

boundary conditions on the linear code should include the sheath conditions implemented in GBS when

a poloidal limiter is present.

It is also useful to look at the adimensionalized parameter ηe since it allows the comparison to the

experimental results where the actual SOL width scale is not relevant since η = Ln
LT

and the common

factors of dimensions and units cancel out. In Fig. 4.8 we show the resulting ηe value through a

radial fit of the density and temperature toroidally and poloidally averaged profiles to an exponential

behavior like before. Dividing Ln by LT a value of ηe = 0.80 is obtained. This value is the one used to

compare the experimental results with the non-linear simulations. The value of ηi could also be used, but

experimentally only Te is known with precision at the SOL and through the introduction of a finite τ in
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GBS we obtain ηi ' ηe.
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Figure 4.8: Poloidally and toroidally averaged density and electron temperature profiles fitted to an
exponential behavior. The obtained value of ηe = Ln

LTe
is ηe = 0.80.

Looking at the poloidal variation of ηe in Fig. 4.9 we see the expected periodic behavior but not the

same characteristic LFS vs HFS. A value of ηe < 1 shows that LT > Ln and at the LFS this difference

becomes steeper.
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Figure 4.9: Poloidal variation of ηe from the fit to non-linear simulations.
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4.3 Non-linear Analysis

We have seen through linear studies that the predicted instabilities are BM at the LFS and DW at the

HFS. This has been confirmed by the gradient removal hypothesis, which has already been shown that

provides similar typical gradient length for various GBS quantities. The confirmation of the predicted

instabilities through non-linear simulations not only validates the aforementioned hypothesis (leading to

a conclusive simple model) but supports our methodology to identify non-linear turbulent regimes, even

for more complicated SOL configurations.

In Fig. 4.10 we look at a scatter plot between potential and density fluctuations (normalized by

their respective standard deviation) for the cold ion simulation (top) and for the simulation with no BM

coupling (bottom), which shows a higher correlated plot at the HFS than at the LFS. As we have seen

in Chap. 3, it is an evidence of the DW character of turbulence at the HFS, where the interchange drive

is not as relevant. This points to the same results that we have seen through the linear solver (Fig. 3.4).

It is interesting to note the differences with the simulations with no interchange drive (also shown in

Fig. 4.10). As we have seen before in Fig. 4.4, when the ballooning character is lost, the typical gradient

lengths decrease here and increase at the HFS.
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Figure 4.10: Cross-coherence test at the HFS and LFS respectively (electric potential vs density). At the
top is an ISTTOK-like simulation and at the bottom the BM coupling terms are turned off.
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Moving to the phase-shift test, we can see in Fig. 4.11 that the test shows a negligible phase-shift of φ

with n at the HFS indicating a non-ballooning character at this location but it remains inconclusive at the

LFS. Despite the greatest variation of the phase-shift that can point to a finite value, there is no indication

that π/2 is a preferred value.
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Figure 4.11: Phase-shift between φ and Ne at the HFS and LFS respectively.

Lastly, the power-spectrum test is show in Fig. 4.12. The non-dependence of the FFT(Vf ) (and also

for the FFT(Ne)) with the frequency is clearly observed for f < 80 KHz and the power indices for LFS

are greater than at the HFS. In ISTTOK [1] the non-dependence for low frequencies has been observed

as well as a small difference in the power indices (see Fig. 3.5). The most interesting fact is the major

difference in the slope of the power spectrum in the no DW coupling case (Fig. 4.13). It doubles its value,

which becomes close to the experimental value of -2.

We have seen through the power-spectrum that different locations provide different slopes, which

does not coincide with the experimental observations. This can be due to the different instabilities present

at the LFS and HFS that may have different impact on the simulations (and therefore provide different

slopes) but it requires further study.

In order to verify which are characteristic frequencies present we first note that the characteristic

time used as a normalization to model the SOL parameters in the GBS code is cs
R ' 95 kHz. Looking

at the value of cs
2πR , which can be thought as the characteristic angular velocity of the particles around

the torus in the SOL, we obtain cs
2πR ' 15 kHz. Other characteristic frequency is VE×B/Lp which we

represent in Fig. 4.14 as a function of y which reveals itself to poloidally vary between 30 and 90 kHz.

As the transition region is harder to find in the power-spectrum figure, we perform the fit at the startup

position from 100 kHz (the characteristic frequency and the experimental position of the knee) to the last

frequency data (300 kHz).

4.4 Comparison Against Experimental Results

In Fig. 4.15 we provide ISTTOK experimental results at the SOL for electron density, floating potential

and electron temperature at the LFS. We can see the exponential character of the profiles on the Te plot
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Figure 4.12: Power-spectrum at the HFS and LFS respectively (floating potential Vf and density Ne).
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Figure 4.13: Power-spectrum at the HFS and LFS for no DW and interchange coupling respectively for
the electric potential.

and for some Ip values on the density plot. With this we can compute Ln, LTe , ηe and Lp and compare

with the linear and non-linear results. For this we use p = nT which leads to

1

Lp
=

1

Ln
+

1

LT
=

1

Ln
(1 + η). (4.3)

From Eqs. (1.11) and (1.10) together with ISTTOK parameters (table 1.1) we get the formula

q =
39.27

Ip
kA−1, (4.4)

which for Ip = 4.0 and Ip = 5.5 kA provides q = 9.82 and q = 7.14. These will be the values used to

compare with the simulations with q = 8. From Fig. 4.15 we get the average of these quantities for the

two values of Ip. The last point closer to the wall was removed, as done with the GBS data in order to

perform the same analysis on both results. The estimates are presented in table 4.1 and the fits in Fig. 4.16

and Fig. 4.17.

As before, the adimensionalized parameter that does not take into account the SOL width difference
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Figure 4.15: Ip scan at ISTTOK with different values of r − a for Te, Vf and density.
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Ln 12.11
LTe 12.10
ηe 1.001
Lp 6.05

Table 4.1: Experimental results for Ln, LT , η and Lp for ISTTOK from Fig. 4.15 in GBS units (1 GBS unit =
0.91 mm in SI units).
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Figure 4.16: Exponential fit to ISTTOK experimentalNe results. The fit to Ip = 4.0 kA provides Ln = 1.232
cm with an R2 = 0.89 and the fit to Ip = 5.5 kA provides Ln = 0.971 cm with an R2 = 0.941.
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Figure 4.17: Exponential fit to ISTTOK experimentalNe results. The fit to Ip = 4.0 kA provides LT = 1.033
cm with an R2 = 0.99 and the fit to Ip = 5.5 kA provides LT = 1.168 cm with an R2 = 0.98.
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between GBS simulations and experiment is ηe, where this difference is canceled out by the ratio Ln/LT .

From the simulations (Fig. 4.9) we obtain a poloidal variation of ηe from 0.7 to 0.9, with an average value

of η̄e = 0.8. Since the error bars from the fit provide an error of ±0.05, at the LFS ηeGBS = 0.8± 0.05. The

experimental measurements were performed at the LFS, where it was found ηeexp = 1.001.

The experimental value lies outside the fit confidence interval for ηe. Since GBS simulations are

performed with a larger SOL width, there could be some differences in the values of Ln and LT for a

smaller domain. A simulation with the ISTTOK’s SOL width value points to an increase of ηeGBS but the

results are not conclusive due to the destabilization provoked by such a small radial domain, mainly the

major turbulence drive to the walls.
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5
Conclusions

One of the main challenges today’s fusion program is to accurately predict the SOL dynamics and

understand the physics behind it. It is a very rich domain, from the study of the plasma boundary

conditions (where the plasma is lost to the divertor or limiter in this region) to the study of turbulence

driven transport. SOL physics is what determines the boundary conditions for the plasma in the whole

machine, regulating the power exhaust. This is why we need to identify the turbulent regimes present

in this region, their main features and their dependence on SOL operational parameters. In this thesis,

we focus on the analysis of scrape-off layer dynamics on ISTTOK geometry, which has a single poloidal

limiter and a large aspect ratio with a circular cross-section, and study the results provided from linear

and non-linear simulations which are then compared to the existing experimental results.

In chapter 2 we have detailedly described the model used, which is based on the drift-reduced

Braginskii equations. We also describe ISTTOK’s geometry and parameters, together with the numerical

implementation of the non-linear code, its boundary and initial conditions.

In chapter 3 we introduce the linear solver, from the linear set of GBS equations to the numerical

implementation, together with an estimate of Lp (plasma pressure typical gradient length) through the

gradient removal mechanism. The main instabilities included in the model are described and their

respective branches. In the final section we describe the different diagnostics used in the non-linear

simulation results.

In chapter 4 the simulation results are described and analyzed. GBS simulations allowed a discussion

of the different modes present in the LFS and HFS through the non-linear tests described in section ??.

It was observed a greater correlation between the electric potential and density at the HFS compared

with the LFS, assessing the drift-wave character of the turbulence there. Performing the power-spectrum

of the floating potential, we have identified different slopes at the HFS and LFS, which does not match

the experimental results. This may be due to the different impact of the instabilities at those locations.

The gradient removal hypothesis provided an Lp with the same behavior as seen on the non-linear

simulations. It also pointed that at the LFS the inertial ballooning mode instability is responsible for the

greatest linear growth rate, while at the HFS it is the inertial drift wave instability. Through a scan in ŝ

we see that the value of magnetic shear is negligible when it comes to assert the instabilities present on

ISTTOK. The introduction of ionic temperature (through the introduction of a finite τ = Ti
Te

) results on a
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small broadening of the poloidal range of the InDW branch. Looking at the experimental results, we have

estimated a value of Lp = 4.94 at the LFS (in GBS units) while the non-linear show a value of Lp = 14.

This was mainly due to the SOL width used in GBS simulations of Lx = 50, while at ISTTOK Lx = 16.

Due to this fact, we look to the adimensionalized parameter ηe, where ηeGBS = 0.8 and ηeISTTOK = 1.0, a

relative error of 20 %.

Future extensions of this work include the study of non-linear simulations with different values of

resistivity and magnetic shear in order to analyze the different instability branch (RBM) shown within the

linear code and perform a study on the presence of plasma blobs in ISTTOK’s SOL. Furthermore, in order

to completely model ISTTOK’s geometry, the parallel diffusion routine has to be ported to a poloidally

symmetric configuration and the boundary conditions should include a real limiter with 12 graphite

plates instead of a continuous poloidal plate. In order to address the analysis of future reactor relevant

configurations, GBS simulations can be performed in a more complicated magnetic geometry (such as

X-point geometry). Under study with this code is the simulation of plasma blobs [28], aspect ratio effects

[54] and intrinsic toroidal rotation in the SOL [55] which is relevant not only for ISTTOK (see for example

[56]) but also for future tokamaks such as International Thermonuclear Experimental Reactor (ITER).
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A
Derivation of the Braginskii equations

The GBS code evolves the drift-reduced Braginskii equations [6]. The drift-reduced approximation has

been used by several authors (e. g. [57]). We shall derive the Braginskii equations [33] here and the

drift-reduced model in Chap. 2.

Starting with a kinetic description, namely the microscopic distribution function f̄s for each one of the

plasma species s, we define the microscopic density and current as (with es the charge of the species s)

ρ =
∑
s

es

∫
f̄s(r,v, t)d

3v, (A.1)

j =
∑
s

es

∫
vf̄s(r,v, t)d

3v, (A.2)

with the normalization
∫
f̄s(r,v, t)d

3v = ns(r, t), where ns is the density of the species s. Through

phase-space conservation we conclude [33]

∂f̄

∂t
+ v.∇rf̄s + as∇vf̄s = 0. (A.3)

The acceleration of the species s is due to the electric and magnetic field coupling provided by the

Lorentz force as = es
m (E + v ×B). Further applying an ensemble average (integrating over the phase

space of the system) with the notation 〈〉, we define the collision operator Cs(f) and the (ensemble

averaged) distribution function fs as

〈as∇vf̄s〉 ≡ 〈as〉.∇vfs − Cs(f),

〈f̄s〉 ≡ fs,
(A.4)

arriving at the Boltzmann’s equation

∂fs
∂t

+ v.∇fs + 〈as〉.∇vfs = Cs(f). (A.5)
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This “averaged” description is the basis for the fluid model. This description is appealing, since one

can understand the significance of each fluid quantities such as density and temperature with comparison

to the more abstract definition of distribution functions. In the fluid model, one defines the moments of

the distribution function - density, fluid velocity, stress tensor and energy flux density respectively as

ns(r, t) ≡
∫
fs(r,v, t)d

3v, (A.6)

nsVs(r, t) ≡
∫

vfs(r,v, t)d
3v, (A.7)

Psij (r, t) ≡
∫
msvivjfs(r,v, t)d

3v, (A.8)

Qs(r, t) ≡
∫
ms

s
v2vfs(r,v, t)d

3v. (A.9)

Further introducing the relative velocity ws ≡ v −Vs in order to position ourselves in the rest-frame

of the system, we can define the press tensor ps(r, t) =
∫
mswswsfs(r,v, t)d

3v and the heat flux density

qs(r, t) =
∫ msw

2
s

2 wsfs(r,v, t)d
3v, obtaining the (scalar) pressure ps ≡ Tr(ps)

3 and, by direct substitution

the relations

Ps = ps +msnsVsVs, (A.10)

Qs = qs + ps.Vs +
3

2
psVs +

msV
2
s

2
nsVs. (A.11)

Considering only binary collisions and the fact that in a strongly magnetized plasma the Debye length

is much smaller than the typical length of system, we can consider the collision operator Cs(f) as bilinear

in the distribution functions of the two colliding species [34]

Cs(f) =
∑
s′

Css′(fs, fs′). (A.12)

Through the collision operator one can also define its moments and obtain kth order moments of the

Boltzmann’s equation, arriving to the fluid equations (with the Einstein summation convention)

dns
dt

+ ns∇.Vs = 0, (A.13)

msns
dVs

dt
+∇ps +∇.πs − esns

(
E +

Vs

c
×B

)
= Rs, (A.14)

3

2

dps
dt

+ ps∇.Vs + πsij∇iVsj +∇.qs = Qs, (A.15)

with the definitions
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ps ≡ psI + πs,
d

dt
≡ ∂

∂t
+ Vs.∇, (A.16)

Rs ≡
∑
s′

∫
v ms Css′ d

3v, Qs ≡
∑
s′

∫
msw

2
s

2
Css′d

3v. (A.17)

After all this manipulation, the well-known closure problem still persists. There is no amount of

rearrangement that can provide a solution to this defect. In order to arrive to the Braginskii equations we

apply an asymptotic closure scheme, namely the Chapman-Enskog theory of a neutral gas dominated by

collisions [58]. Here, the small exploited parameter that provides the estimation of the error involved in

the closure is the ratio of the mean-free-path between collisions λ to the macroscopic variation length

scale L, expanding the distribution function in the small parameter

δ =
λ

L
� 1 (A.18)

where to zeroth order in δ, f0 is a Maxwellian

f0(r, ,t) = n(r)

(
m

2πT (r)

)3/2

exp
(
−m(v −V)2

2T (r)

)
, (A.19)

with p = nT .

The Chapman-Enskog scheme is appropriate in our description because we are dealing with collisional

plasmas. If we further assume that the plasma is magnetized, we can expand each quantity in terms of the

parameter

ε =
ρ

L
� 1 (A.20)

where ρ is the Larmor radius and L is the macroscopic length-scale.
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B
Muller’s Method Algorithm

Muller’s method is used as a generalization of the secant method (which uses 2 initial approximations)

in order to find the roots of an equation through 3 initial approximations and then joining them with a

second degree polynomial. In this work, we use them in order to find the root of Lp − R
cs

γ
ky

(derived in

section 3.4). The quadratic formula is used to find the next approximation.

Defining xn = (Lp)n and the function P (xn) = max( Rcs
γ
ky

) − (Lp)n at iteration n, we have the

algorithm [52]

q ≡ xn − xn−1

xn−1 − xn−2
, (B.1)

A ≡ qP (xn)− q(1 + q)P (xn−1) + q2P (xn−2), (B.2)

B ≡ (2q + 1)P (xn)− (1 + q)2P (xn−1 + q2P (xn−2), (B.3)

C ≡ (1 + q)P (xn) (B.4)

xn+1 ≡ xn −
2C(xn − xn−1)

max
(
B2 ±

√
B2 − 4AC

) . (B.5)
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